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A B S T R A C T

As the Architecture, Engineering and Construction sector is embracing the digital age, the processes involved in
the design, construction and operation of built assets are more and more influenced by technologies dealing with
value-added monitoring of data from sensor networks, management of this data in secure and resilient storage
systems underpinned by semantic models, as well as the simulation and optimisation of engineering systems.
Aside from enhancing the efficiency of the value chain, such information-intensive models and associated
technologies play a decisive role in minimising the lifecycle impacts of our buildings. While Building Information
Modelling provides procedures, technologies and data schemas enabling a standardised semantic representation
of building components and systems, the concept of a Digital Twin conveys a more holistic socio-technical and
process-oriented characterisation of the complex artefacts involved by leveraging the synchronicity of the cyber-
physical bi-directional data flows. Moreover, BIM lacks semantic completeness in areas such as control systems,
including sensor networks, social systems, and urban artefacts beyond the scope of buildings, thus requiring a
holistic, scalable semantic approach that factors in dynamic data at different levels. The paper reviews the multi-
faceted applications of BIM during the construction stage and highlights limits and requirements, paving the way
to the concept of a Construction Digital Twin. A definition of such a concept is then given, described in terms of
underpinning research themes, while elaborating on areas for future research.

1. Introduction

Emerging Building Information Modelling (BIM) tools and tech-
nologies have gradually changed the way information about our built
environment is created, stored and exchanged between involved sta-
keholders [1,2]. Since the advent of the Industry Foundation Classes
(IFC), more integrated methods to share construction data have
emerged and have since become adopted industry-wide. The pro-
liferation of IFC alone has had a major impact on how current tools and
methods are developed in research and development. However, digital
technologies across the board are advancing at an ever-increasing pace,
taking advantage of the Internet of Things (IoT) and Artificial In-
telligence (AI) agents (data analytics, machine learning, deep learning,
etc.). Thus, the evolution of BIM should be carefully framed within a
paradigm that factors in people, processes and these emerging tech-
nologies [1] in an increasingly inter-connected world [3].

While the BIM paradigm was introduced to improve collaboration
during design and construction, it quickly became involved into ad-
jacent research areas across the built environment lifecycle, at building,

infrastructure and city levels. As it was initially envisaged to facilitate
the effective exchange of information between segregated silos [4], BIM
now faces significant challenges where leveraging big data, IoT and AI
are heralded as potential solutions to automation and the inclusion of
wider environmental contexts. The evolution of BIM interoperability
solutions, from ISO STEP to IFC and more recently IfcOwl are seemingly
not able to effectively leap from a static BIM to a web-based paradigm
[6]. Conversely, design and construction stages project data has in-
creased almost exponentially since BIM adoption, experiencing what is
termed ‘drowning in data’ [7], wielding little added benefit to the
construction supply chain to date.

Parallel to developments within the construction industry, external
pressure for a smarter built environment is exerted by more ambitious
energy and carbon emissions agendas across the world. From smart
cities and grids perspectives, the inclusion of IoT and AI is demanded to
deliver improved energy efficiency and lower operation costs [8]. The
inclusion of BIM represents but a small part (a narrow building-level
view) within the wider environmental context. Although BIM uses have
extended to include lifecycle management of built assets, the current
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state of BIM is not compatible with IoT integration [1], specifically
because of its legacy formats and standards which limits BIM usability
and extensibility with a semantic web paradigm.

Therefore, this paper elaborates on viable ways of crossing from a
BIM world view with its existing knowledge domain and specific
technologies, towards a Digital Twin (DT) world view which promises
greater potential at the intersection of IoT and AI through semantic
models. This should address the challenge to change from its static,
closed data with recursive interoperability issues, towards a linked data
paradigm, where the building product can be fully represented in the
form of a Digital Twin. In order to help clarify the subject, this article
aims to tackle the following main objectives:

1. Review and elicit the current state of BIM use during the construc-
tion stage;

2. Analyse the components and perceived abilities of Digital Twins as
applied across a wide range of engineering domains;

3. Identify current gaps and directions for future research.

Following this introduction, background research is presented in
Section 2, elaborating on the concepts of nD BIM, the Semantic Web
and Digital Twins. Section 3 outlines the methodology in selecting the
research for analysis. Section 4 presents the results of the review,
scoping in on the nD BIM uses (Section 4.1) and then shifting towards
the topic of DT from various adjacent fields (Section 4.2). Following a
holistic outline of research, Section 5 discusses the potential roadmap
for realising a Construction Digital Twin (CDT) from various perspec-
tives (abilities, smart services and evolution). Finally, the limitations
and future research directions are summarised in the Conclusion.

2. Background research

Following a review of the manufacturing sector, Tao et al. [9]
conclude that there is an urgent need to define a unified framework for
developing “Digital Twins”. From the construction perspective, the
Digital Twin paradigm aims to enhance existing construction processes
and models (nD BIMs), with their underpinning semantics (e.g. IFC,
COBie) within the context of a cyber-physical synchronicity, where the
digital models are a reflection of the construction physical assets at any
given moment in time. As such, a review of existing BIM uses (across
the nD spectrum) and their underlying semantics is necessary to un-
derstand the dynamics of construction data models, which needs to be
re-integrated factoring in newer technologies demanded by the DT
concept.

2.1. The complexity of BIM dimensions and domains

Within the context of BIM, the 4D modelling process brings in a
virtual representation of another dimension (time), which means that
all aspects of the BIM process (graphical models, management, costs,
resources, safety issues, etc.) can now be represented, viewed and
analysed from a temporal perspective. Research on nBIM modelling
argues that each of these aspects is a further dimension of BIM in their
own right [10,11]. In contrast to this it can be argued that the 4D is the
final dimension of BIM, as the time component is the final one that can
be measured and considered in a time-space continuum. However, the
fifth dimension (5D) which encompasses cost estimation [12], seems to
be accepted by many researchers and industry professionals [13], with
it being specifically defined within the BIM Dictionary [14]. Despite
this, several studies focused around 5D BIM do not consider the 4D BIM
as the point of departure, but often limit the methodologies for cost
estimation at 3D model and cost information [15]. The emergence of
the nD BIM paradigm has consequently changed the meaning of ‘di-
mension’, more likely referring to application domains, uses or use-
cases of 3D and 4D modelling which add different contexts, expanding
upon the view of BIM fields and lenses [16]. A survey on this particular

topic concluded that there is still much confusion when referring to the
nBIM paradigm, with the vast majority of respondents recognising 4D
BIM, with some 5D BIM, but no consensus on the successive dimensions
[13]. While the correct terminology is still regarded as evasive by
many, the prospective uses of 3D and 4D models continue to be ex-
plored in research and development, and are considered fundamental
models for design construction management.

More recent research reveals newer application domains, particu-
larly looking at lean construction [17], site monitoring [18,19], health
& safety [20] or environmental aspects [21] which provide new ways to
view and utilise nD model data. This in turn brings new degrees of
complexity, with more input data required by each domain. This data
often originates from heterogeneous sources (tools, sensors, building
management systems, etc.), which need to be correlated to existing BIM
models on object levels, be consistent across project models and doc-
umentation, as well as over time.

Even though in the past they showed great promise, the use of 3D
and 4D models was rarely used during construction phases [22]. Today
however, the use of BIM models has become mandatory to ensure faster
and more collaborative processes [23], often also being considered as
giving practitioners an edge on the market. Where BIM is now applied
throughout the full building lifecycle from design to decommissioning,
4D and 5D BIM has been traditionally applied at the pre-construction
and construction stages [24]. This is in part due to increased co-
ordination and collaboration needs during these stages, the involve-
ment of several new actors, and multiple fragmented data models. Lo-
gically, it is during these stages that the apex of the BIM
implementation is reached, where all stakeholders converge and col-
laborate using 4-5D BIM, producing a vast amount of information in
return. However, much of the information built during design and
construction is lost, with only a minuscule amount of structured data
being transferred to the facility management stage, usually in the form
of a COBie spreadsheet [25] with additional 3D information, depending
on client specifications. Thus, the BIMs produced remain closed and
serve little uses after the completion of the construction project, com-
pletely neglecting its uses for the future lifecycles and the creation and
maintenance of Digital Twins. Additionally, the engineering models and
BIM uses across 3-4-5D BIM processes are generally decoupled, often
defaulting to a generic, incomplete 3D geometric model. There is a need
to connect these distributed sources of data, information and knowl-
edge across the spectrum, to fully take advantage of nD BIMs.

2.2. Achieving integration using semantic models

Industry requirements for model interoperability have been partly
fulfilled by commercial vendors, which try to facilitate seamless in-
tegration via import/export capabilities from one BIM tool to another.
However, this can quickly become overwhelming as the number of tools
and platforms shared amongst project actors increases over time. The
IFC standard [26] was specifically designed to deal with the industry's
interoperability problem, including concepts across several well defined
application domains [27]. Although the IFC schema has evolved sig-
nificantly in the last decades, it still has not fully solved the inter-
operability problem for all application domains, with the creation of
Model View Definitions (MVDs) being an arduous process [28]. Ad-
ditionally, the IFC format was designed for transferring model data
from one tool to the next, and not to be modified or used dynamically.

The inclusion of Linked Data (LD) and Web Ontology Language
(OWL) models has more recently tried to address these old challenges.
A pilot study investigated the capabilities of semantic web, applied to
acoustic building design closely tied to IFC concepts [29]. Such an
approach enables rule checking process to go beyond the schema scope,
thus allowing for more flexible MVDs, which are crucial in including
non-traditional application domains under the BIM umbrella. Many
recent developments rely on IFC, which is seen as an underlying schema
for structuring data, while its ontology representation - IfcOwl [30,31],
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provides better interoperability and reasoning capabilities on top. As
developments around this topic grew, it became apparent that ontology
representations of the IFC schema allow for a flexible and more robust
backbone for interoperability requirements [32]. Due to being com-
puter-interpretable, by definition OWL models allow the inclusion of
Description Logics (DL) rules, enriched semantic representations with a
higher degree of ‘meaning’, while being part of The Semantic Web Stack
[33] for sharing resources over the web.

When faced with the challenge of representing a complex socio-
technological system, the use of OWL models is a mandatory step to
ensure correct alignment between multiple domains such as: actors,
sensors, management workflows, web resources, BIM model data, etc.
Most importantly, these representations can be used for intelligent
processing and reasoning, which is not supported by legacy formats. An
ontology approach is also considered more suited for future-proofing
when compared to older standard file formats, and has also become part
of the UK's government strategy for defining and developing BIM level 3
and beyond [35]. This reflects current research trends on utilising the
connectivity and richness of the Semantic Web [6]. As such, it is logical
for BIM to adopt a semantic web world view if it is to remain relevant
and continue to add value to our built environment [1].

2.3. The Digital Twin paradigm

The need to monitor and control assets (manufactured elements,
buildings, bridges, etc.) throughout their lifecycle, coupled with ad-
vances in technological capabilities, have moved several research fields
into investigating Digital Twin uses and potential. Although many of
these applications have been investigated in their own right under the
BIM field, the DT paradigm requires an increased level of detail and
precision, which ranges from small manufactured assets, buildings, city
districts to potentially nation-wide digital twins [37].

Digital twin is an old term, which was coined 20 years ago, surfa-
cing now as our society becomes more interconnected [3]. The concept
of a Digital Twin was introduced in 2003, as part of a university course
on Product Lifecycle Management [38] – the idea of the concept later
proliferated in adjacent fields with the rise of new technologies. The DT
concept was initially published in the aerospace field and was defined
as “a reengineering of structural life prediction and management” [39],
later appearing in product manufacturing [40,41] and more recently
into smart cities [1,42]. Several studies refer to a DT as a “cyber-phy-
sical integration” [43–45], with the term “Digital Twin” representing
the ultimate, unachievable goal, as no model abstraction can mirror
real world things with identical fidelity. The term “System of Systems”
is also mentioned [8,46], which is supposed to deal with the scalability
and sustainability of systems aimed to communicate data in a more
effective and intelligent manner. For the purposes of this research, we
adopt the approach provided by Grieves [38], granting a holistic view
of the complex system representing a DT. Thus, the main DT compo-
nents (as shown in Fig. 1) considered here are:

1) The Physical components,
2) The Virtual models and
3) The Data that connects them.

The connection loop between the “Virtual-Physical” duality of the
system is provided by the “Data” in its various forms. For example,
Grieves [38] considers the data from the “Physical” to the “Virtual” to
be raw and to require processing, while the data in the opposite di-
rection is subject to several transformations, which can be processed
information and stored knowledge across digital models – with higher
degrees of meaning. However, this is ultimately reflected back to the
“Physical” as data through actuators. As such, the “Physical” part col-
lects real world data which is sent for processing. In return, the “Vir-
tual” part applies its imbedded engineering models and AI to discover
information which is used for managing the day to day usage of the

“Physical”.

3. Methodology

The research approach within this article is divided into several
steps (Fig. 2) attempting to provide answers to the 3 main research
questions from the introduction:

1) Review BIM for construction application - by identifying previous
literature reviews around the subject and structuring more recent
research into several uses of BIM. Additionally, the use of common
collaboration standards and more recent semantic web technologies
were considered important to deal with model semantics and the
meaning of the data within the construction field.

2) Analyse DT uses in adjacent fields – by identifying existing literature
from construction, energy, manufacturing and smart cities and

Fig. 1. The Digital Twin paradigm.

Fig. 2. Employed research methodology steps.
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outlining common DT concepts, features and technologies;
3) Identify research gaps – by contrasting the previous two steps

through the lenses of creating a Construction Digital Twin.

The overall research analysis considers 196 studies, 25 of which are
concerned with the definition and application domains of the DT
paradigm. The vast majority of these studies were published in several
renowned journals within the field of construction information tech-
nologies. Additional studies from conference proceedings within the
same fields of research were also included, depending on their per-
ceived quality. The initial search keywords were “Building Information
Modelling (BIM)”, “nD” in combination with “planning”, “scheduling”,
“management”, “monitoring”, which were later widened to include
“Industry Foundation Classes (IFC)”, but also “ontology”, “linked data”
and “digital twin” to identify newer methodologies for the scope of this
research.

4. Analysis of the research landscape

4.1. Distribution by publication date

In line with the aim to provide an overview of the research land-
scape around the subject at hand, Fig. 3 outlines the 196 research ar-
ticles reviewed by their publication date. Although the IFC schema and
standard have been released almost three decades ago, their increase in
popularity in the context of nD BIM comes relatively late. More re-
cently, however, there has been an increase in use of linked data
technologies to integrate the traditionally dispersed data across the
construction industry. The Digital Twin term re-emerges in several

adjacent engineering fields in more recent years.

4.2. Construction BIM uses

4.2.1. Previous literature reviews
Several relevant reviews were identified on the use of 4D modelling

[10,11,47]. While the early research did not envisage BIM as a process,
it explored most of the benefits and current use-cases of 4D modelling
methods, with [47] having proposed the inclusion of a health and safety
use-case. A recent review on the status of 5D BIM further sub-divides it
into several uses according to the literature [12]. The most recent re-
views on the “nD BIM” paradigm add views on safety management and
quality assessment [10], as well as on energy and environmental con-
cerns [11].

The status of semantic web technologies within the construction
sector has been revised previously, with [48] having provided a view of
the forming trends and [6] having discussed the latest implementations
around interoperability, linking of data across domains, as well as lo-
gical inferencing.

4.2.2. Distribution by applied use-cases
This section provides a structured in-depth view of each identified

BIM use during construction, as is summarised in Fig. 4 below. The
figure should be interpreted considering the fact that the BIM uses are
highly inter-related, with the majority of studies spanning across mul-
tiple BIM uses. As such, many articles appear in multiple columns, with
only a few standing out across all topics, which are often referenced
below.

Fig. 3. Distribution of reviewed papers by publication date with important milestones in the construction sector.
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4.2.2.1. Construction logistics. A system for simulating the site layout in
terms of zones, resources and positioning of equipment and
construction cranes was developed by Li et al. [49]. The visualisation
of such a method was envisaged to help planners foresee possible future
problems. However, there is no apparent use of common formats, and
little means of automation. More recent developments on this use-case
are concerned with correct deployment of temporary works and the
dynamics of large construction vehicles, which fall under the clash
detection use-case as well.

4.2.2.2. Clash detection. Located under 4D modelling, Hu and Zhang
[50] distinguish clash detection between three sub-uses: schedule
conflict, resources and cost conflict analysis and site conflict analysis.
This classification corresponds with the already defined BIM uses, with
resources and cost considered as part of the 5D BIM. The division of
clash detection between 3D objects and temporal objects seems to have
become more evident in research trends as well. Additionally, Moon
et al. [51] present a method to carry out clash detection regarding
work-spaces, effectively referring to temporary site areas and objects
and how they interact over time with existing or newly constructed
ones. The placement of cranes on a construction site using genetic
algorithms was also investigated by Marzouk and Abubakr [52]. The
use of a schedule is seen as important in order to avoid spatial clashes
by optimising the temporal programming, essentially avoiding the
physical clash up-front [53,54]. A detailed case study on the use of
clash detection outlines the benefits it brings to site temporary works
management [55]. The trend around clash detection overlaps
consistently with the Construction Logistics use-case, where the
placement of materials and equipment is analysed over time. A recent
surveys shows that 4D simulations are used mostly for communication
purposes with clients during planning stages, revising site logistics, but
rarely for clash detection [56].

4.2.2.3. Site monitoring. The threads of research on this topic are more
concerned with accurately monitoring the site, correctly interpreting
the gathered information and matching it with existing digital models.
The inclusion of RFID (Radio Frequency Identification) tags is often
considered, getting the 4D process in line with product manufacturing
[57]. Park et al. [58] offer a technical view using cameras in an attempt
to track workers on site. On a similar subject, considering the
participation of construction managers, Sacks et al. [59] use lean

principles to monitor site activities more effectively. From a
technological point of view, the use of laser scanning and
photogrammetry to track site progress to an already developed 4D
model have attracted more and more interest [60,61], not without
limitations of their own [62].

Hamledari et al. [63] explore the use of drones to capture site status
and update the schedules back into an IFC model based on photo-
grammetry. A similar study was conducted by Kim et al. [64] on pro-
cessing images on site of a bridge project, but without common data
standards. Similarly, Kropp et al. [65] developed a method to improve
the automatic updating of 4D models using computer vision, by con-
sidering the interior spaces of a building under construction. Another
study focused on detecting the types of materials on site to track the
progress in more detail and relate it to managing resources [66].

4.2.2.4. Quality control. Quality management techniques around BIM
are envisaged as part of a nD modelling process, where the 3D
information (product) is attributed to quality inspection checks
(depending on an organisational body) which are linked to a
scheduled process [10,67]. This is strictly dependent on adequate site
monitoring techniques, with known integration limitations between site
information captures (e.g. photos, forms, scans, etc.) and BIM [67]. A
case study on a newly constructed bridge equipped with sensors during
its construction suggest a practical approach to dealing with these types
of monitoring and quality management issues [68]. Although not
focused on the idea of a DT, the applied case study methodology
shows the trend of integrating sensors with buildings and
infrastructure, showcasing the growing trend of cyber-physical
integration, and thus expanding on what ‘useful’ information is
required for future lifecycle stages.

4.2.2.5. Safety management. Site safety should be monitored using
management tools, as the risks to safety vary in space and time [10].
A methodology for combining several construction sequences and
identifying potential hazards related to scaffolding was introduced by
Kim et al. [69]. This was tested using typical BIM platforms, which
usually lack of BIM safety planning object libraries that can relate to
temporary site structures [70]. This makes safety management around
sites particularly difficult, as relying on digital objects may not be
enough to effectively predict and omit safety concerns in complex
spatio-temporal contexts. Shang and Shen [20] present a way in which

Fig. 4. Distribution of studies on BIM uses in construction.
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the safety of a construction site is analysed based on spatio-temporal
collisions and their frequency, as opposed to risk factors. These sort of
methods inherently improve health and safety on site as it helps
planners visualise and detect them beforehand [71]. Similarly,
Benjaoran and Bhokha [72] apply certain knowledge rules on a
model to detect hazards when working at elevated altitudes.
However, the application of such methods in practice requires
constant surveillance and in-time hazard identification, which is often
the main limitation of BIM-based tools and methods. With more modern
site monitoring equipment, machine learning is at the forefront of site
safety prediction [73], potentially providing a more automatic way to
gather and classify safety events, making safety management more
reliable.

4.2.2.6. Construction simulation. The more recent trend on this topic
seems to be around the automation of the process using different
techniques, which need to rely on the BIM as a source of data and
semantics [74,75]. The correct animation of the construction sequence
has always been the main focus on construction simulation [76], with
newer techniques used to estimate the project duration based on
different assumptions about the 3D model, resources and working
hours [77,78]. The common ground around this subject is that they all
require an enriched BIM with additional resources which are inputted
manually as assumptions or imported from different sources. The
existing automation techniques remain limited to input errors or
misinterpretations of the model's semantics.

4.2.2.7. Visual communication. The concept of visualising nD on large
BIMs remains a challenge. The visualisation needs to be clear and
specific to user's needs and to support collaborative and coordination
meetings, from a functional as well as from an ergonomic perspective
[2]. A method is introduced by Russell et al. [79] on visualising the data
easier and in a more meaningful manner using linear programming of
the construction schedules. The use of colour schemes and dynamic
animations have always been the prime features of 4D models, aiding
the viewer to better understand the data [81]. A more recent work by
Zhang et al. [82] uses colour schemes for element degradation over
time in a 4D modelling tool, specifically targeted at infrastructure
maintenance. This is intended to be integrated with site monitoring
techniques, improving the management of large infrastructure data.
Some argue that there is a need to standardise 4D visualisation [83].
This would have to be linked to each of the actors' disciplines and their
role within the collaborative effort [2].

4.2.2.8. Scheduling. The latest trends on applying scheduling are more
focused on the processes of demolition and waste management, which
are strictly related to the materials within the model, and the different
dynamics which this lifecycle stage brings [21,84]. The deconstruction
methods can vary greatly depending on building type, from disorderly
concrete structural demolition to a more modular deconstruction
process of oil and gas rigs [84] where the structure is divided in
multiple parts, describing a different composition than that of a
construction process.

It can be argued that scheduling models are not comprehensive
enough, with missing relationships between the components as they are
scheduled or monitored, Dang and Bargstädt [85] proposing to add
several relationships related to time and workflow dependencies, aimed
to enrich the BIM. Although this method would traditionally require
significant manual input, the presence within the model of such de-
tailed relationships would greatly benefit from automation in future
developments.

Several studies have been identified to implement lean techniques
for construction scheduling [17,59], thus focusing not on making the
modelling process more efficient, but rather optimising the entire
project planning in light of BIM adoption and its potential to support
lean processes.

4.2.2.9. Cost estimation. The key areas of development around cost
analysis and estimation focus on frameworks for easier adoption and
use of the 5D BIM. Several studies point out the barriers for 5D BIM
adoption in industry and recommend frameworks on decision-making
[88], entire building lifecycle estimation [89], or on choosing the
adequate tools or platforms for adoption [12]. Considering that costing
has been a developed subject before the BIM term appeared, the
tendency was to link 3D model materials with cost databases [15],
and therefore skip the 4D model entirely. Correctly including all 3-4-5D
factors for accurate and up-to-date lifecycle project costing remains a
challenge due to a lack of interoperability to deal with such a scale in an
effective manner.

4.2.3. Technologies for managing semantics
4.2.3.1. Industry foundation classes. The use of standardised formats
such as the IFC is constantly being improved to account for more
efficient site management via BIM virtual models [17]. Although the
IFC schema has evolved significantly and added new modelling
concepts, there is a low level of IFC adoption concerning nD
modelling in general. As each use-case within the nD BIM paradigm
is very specific, the federation and transfer of information is still
challenging, with practitioners relying on external formats or tools.
For example, although a 4D BIM can be expressed and used in IFC, this
is often kept separate with the 3D BIM model (in IFC) and a scheduling
model (in various formats). The federation of multiple modelling
documents (in multiple formats) which evolve in parallel can cause
disruptions and conflicts which could greatly benefit from automation
and linked data.

The suggestion to use IFC for directly modelling in 4D, and thus
associating 3D elements with time components has been done for some
time [90], and more recently within the context of automation [54,63].
Several studies consider sub-parts of the IFC schema for the site mon-
itoring uses, where more recent technologies are integrated to update
BIM models [18,91]. For example, Tauscher et al. [74] developed a
method to generate construction sequences based on IFC objects at task
level. Similarly, Kim et al. [75] import IFC model data and generate a
schedule based on materials and pre-defined algorithms, to export a
Microsoft Project schedule. The use of the IFC schema for 4D uses seems
to be very limited, with most studies referring to the IFC model as solely
the source of the building elements, especially those with a 3D geo-
metry present.

Several studies assume the BIM and costing information datasets to
be separate [88,89,92], with no concern for a common format. There
are mentions of overall lack of standards to model costs [93], but the
issues remains on deciding a common format which is suitable across
domains. A more recent study outlines the features of a variety of tools
supporting IFC and various commercial formats for cost analysis [12],
but it is unlikely these tools can incorporate a comprehensive 4-5D BIM
model view in its holistic sense.

4.2.3.2. Semantic web ontologies. An overview of ontology and semantic
web linked data trends in research over the last decade is outlined by
Abanda et al. [48]. There is clear interest in the fields of risk analysis,
project management knowledge sharing and energy performance
analysis. The authors mention that semantic web and linked data are
seen as beneficial because they facilitate interoperability between the
large spectrums of application domains involved in the construction
sector. However, they point out that very few applications exist
commercially which are using ontology support. This is likely due to
complex requirements for ontology-based collaboration in the field of
design and construction. There is however a trend towards
interoperability using ontology layers [94].

The inclusion of IFC to an RDF (Resource Description Framework)
format has been considered for a modular data-linking way, where the
IFC is seen as only a part of the overall vision for managing building
data [95]. Several methods have been introduced to use ontologies for
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integration and reasoning support for BIM in conjunction with the IFC
schema in non-construction contexts [96–98]. More advanced re-
lationships between 4D concepts are proposed by Dang and Bargstädt
[85] at almost to an ontological level, but their alignment to the IFC
schema, the management process and the actors involved are not con-
sidered. Similarly, Niknam and Karshenas [99] represent the BIM and a
schedule model using a simple ontology, without considering existing
concepts from the collaborative process side, or any other existing
schemas such as the IFC. A safety management ontology with rules
which incorporates certain 4D concepts was also developed and in-
vestigated [100]. From a 5D perspective, Aram et al. [101] propose a
knowledge-based framework for costs estimation and quantity take-
offs, enabling storage of knowledge for more accurate future costing
estimation.

The more important developments within the linked data field are
related to interoperability issues. Prudhomme et al. [102] addresses the
gathering and increasing heterogeneity of spatial data on the web,
which requires more automatic and efficient methods for data man-
agement. Ontologies such as IfcOwl or the Building Topology Ontology
(BOT) [103] are expected to express and use building data more ef-
fectively, adding value to the entire supply chain by making the right
data available at the right time [104]. These developments may hint
towards the hidden potential of a linked data paradigm, which would
benefit BIM uses overall. Expressing building model data into semantic
web compatible formats such as OWL or RDF provide the unique benefit
of linking data over the web using schema independent models, as
opposed to relational database or file structures [4]. OWL and RDF are
graph-based models, allowing more flexible representation of syntax
which can facilitate a more dynamic process for information govern-
ance.

Outlining the evolution of technologies and information models [1]
position the DT to be fully reliant on the IFC schema (in its various file
formats), ensuring semantic rich structured data, which would form the
foundation for more efficient ontology based tools and agents. More
recent developments under the W3C Linked Building Data group have
overseen the advancement of newer, more lightweight ontologies cap-
able of representing digital building information on the web. Although
BIM use during construction is on the rise, with several tools being
used, from the research analysis there is clear indication that the level
of BIM development towards Digital Twins is still very low, with very
few relying on IFC, as will become clearer in the following section.

4.3. Cross-domain Digital Twin uses

This section highlights the research state of the art on the subject of
Digital Twins. Relying on previous research focused on defining this
concept from nearby engineering fields [1,43,106–108], several recur-
ring keywords and themes stand out. Each of these terms has been in-
vestigated across the 21 studies selected for discussion and analysis,
shown in Table 1. It should be noted that although not all studies dis-
cuss certain DT components or features, it does not mean that their
authors do not consider that component as part of the DT.

Despite the re-emergence of interest around the concept of ‘Digital
Twin’, the research within this area is still scarce. However, many past
concepts and applications are re-used and re-branded as constituent
parts of Digital Twins due to the increased needs within our society for
interoperability, automation and intelligent systems. Several recent
studies adopt various perspectives in terms of the conceptual compo-
sition of a DT, such as a virtual-data-physical integration paradigm
[43,106,108,109], or a sensing-agency-immune system paradigm [44].
Four distinct levels for the DT are defined by Madni et al. [107], de-
pending on the available information and its level of detail. In addition
to this, we advocate that a DT be considered from a technological
perspective within the context of its field of application. Per se, a DT in
construction should consider different models, tools and technologies to
a DT in manufacturing. However, the overall architecture,

functionalities and features of a DT are expected to be generic across
the board.

4.3.1. Sensing and monitoring the physical
4.3.1.1. Sensing. The majority of studies (Table 1) consider sensing a
vital ability of the DT, with the application of various sensor devices
being the common reference. Although sensor device data is considered
by many of these studies as a source of real-time data [9,43,45,115], the
details on types of sensors, networks or how to make best use of them
for each domain DT are omitted. Conversely, several studies focused on
construction asset cyber-physical systems have used RFID tags and
scanners, with additional sensors (location, load, displacement etc.).
These are integrated via a sensor network to facilitate constant
communication between site sensors and a virtual model [116–118].
While these studies employ detailed methods on constructing the two-
way communication bridge, as well as highlighting the challenges in
installing and maintaining sensors on site [117], they do not address
the alignment of data to the BIM model itself. For more detailed site
captures, the scan-to-BIM methods (mentioned in Section 4.2.2) focus
on capturing very detailed site imagery, feeding a large amount of
visual data for processing, but face limitations in storing, filtering and
matching the “sensor” data with digital assets on the BIM side.

The use of physical sensors to simulated virtual sensors is compared
in one study [46], both of which are used to feed engineering simula-
tions and make predictions. Similarly, Martinez et al. [111] consider
the simulated virtual environment to be a ‘virtual sensor’ as a whole,
used to predict facility behaviour. Consequently, the question on what
is considered a ‘sensor’ appears. For example, the Semantic Sensor
Network (SSN) ontology [119] definition of a sensor includes devices,
software agents and human agents, which are able to make an ob-
servation on particular values or features of interest.

The main challenge on using sensors with DT appears when dealing
with the spatio-temporal resolutions [44], demanding a successful in-
tegration of sensors of different capabilities, reading frequencies, ac-
curacies, their respective locations and the inter-dependencies between
sensor clusters and networks. The research literature seems to point
towards the use of IoT as a means of sensor data capture, almost being
taken for granted. However, the delicate intricacies of sensor dynamics
for each DT application domain and interoperability with the rest of the
DT components remain largely un-explored.

4.3.1.2. Monitoring. The nature of sensing is a continual data influx,
similar to biological organisms which are constantly bombarded with
stimuli from various sources [44]. Although strictly dependent on
sensing capabilities, the concept of monitoring is achieved at the
stage when the influx of sensor data has pre-defined structure and
meaning. This coincides with the building automation systems [1,111]
in the case of the built environment, by which actuations are triggered
when certain conditions occur. The notion of real-time remote-
monitoring [115] is also pervasive, where sensor data is plotted for
human visualisation, verification, analysis and learning (graphs, tables,
simulations and comparisons). This is certainly the case for nuclear
power plants which require constant monitoring on the structural
integrity of the facility, where human intervention on site is
hazardous [113].

The process of monitoring relies on the sensor network underneath,
to select and filter data which is relevant for day-to-day operational
management. This data has to be conveyed in a machine interpretable
way and subsequently be used for decision making by remote agents (AI
or humans) on its Virtual counterpart. On the subject of construction
site cyber-physical systems, several methods to monitor risks on site
have been explored, which can issue immediate warnings to workers on
site [116,118], or issuing warnings on showcasing the potential benefits
of monitoring rules on site sensor data.

4.3.1.3. Lifecycle. All studies agree and consider that a DT should
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encompass the entire lifecycle of the physical asset, with long-term cost
reduction considered the primary added benefit. Planning for the entire
lifecycle will naturally produce profound differences, depending on the
application domain. Manufactured assets will generally experience
shorter lifespans, with more predictable design-manufacturing-
operation processes. The knowledge gained here will have more
immediate yields, contributing to better future generations. However,
when considering buildings, infrastructures or city districts, this is
regarded as an ongoing process of optimising running costs, structural
integrity and safety.

4.3.2. Ensuring the data connection
4.3.2.1. BIM. All studies related to smart cities or the Architecture,
Engineering and Construction (AEC) industry consider BIM to be part of
the DT as an important source of data. BIM is seen as the starting point
for the DT [1,113], acting as a semantically rich 3D reference model for
the DT to use in various applications. The BIM shell is enriched with
time and sensor data, to formulate parallel offline and online
simulations for energy, safety, human comfort and well-being.

4.3.2.2. IoT. Many studies consider the inclusion of IoT for a DT, as its
increased adoption rate has made devices more affordable and their
applications wider. Once again, interoperability is cited as the main
challenge, due to the laborious efforts required to connect DT sensor
data to simulations [111]. Zheng et al. [108] propose a DT framework
for manufacturing implementation, which relies heavily on IoT, and
outline a comprehensive view of available technologies and their
interactions within this field. On the construction side, Ding et al.
[115] present a conceptual framework for integrating BIM models with
IoT devices to monitor the real assets on site, but do not address
technological issues. In contrast to this Howell and Rezgui [1] argue
that BIM is not ready to be integrated with IoT devices, due to the its
legacy formats, which are not aligned with the view of the semantic
web. The status of distributed energy systems was reviewed by Howell
et al. [8] who argue the need for a semantic web approach to ensure
interoperability between all systems and agents exchanging
information across grids. The IoT is considered here to fill the gap
between the physical and virtual worlds, where IoT has the primary role
in health monitoring [107] by bridging physical component's sensors
and actuators with its digital part [118]. Additionally, IoT can be used
to survey the way physical products are used by customers – and deliver

further value to cost benefits for the multiple parties involved.

4.3.2.3. Linked data. Semantic web linked data paradigms are absent
from most studies looking at DT. On the other hand, significant progress
has been made to integrate web semantics with IoT in parallel
engineering fields [120]. The same is true for the BIM domain, where
significant research was carried out on the subject (outlined in Section
4.2.3). The fields of energy, facility management and smart cities are
incentivised to use liked data standards simply due to the scale of the
infrastructure, and the benefits they bring in terms of interoperability.
The use of ontologies seems to be the logical choice. This however
raises the question on which semantic models best match the
circumstances of each DT in terms of data model structure and logics,
but also in terms of practical deployment and optimised processing
efficiency. These aspects have to be considered carefully in light of
integration requirements between IoT, BIMs and manufactured assets
across the supply chain. In terms of efficiency, ontologies can range
from very abstract and verbose models to very simple ones, with the
latter bringing significantly improved performance.

4.3.2.4. Knowledge bases. The viability of a DT depends on the
capability to represent data and its semantics correctly, and make the
entire data sets available for knowledge processing. Both [43,108]
consider the knowledge base as a part of the AI capabilities of the DT,
allowing it to learn and take decisions. This facilitates reasoning and
knowledge discovery capabilities. However, when in the context of
semantics and linked data, the value of knowledge bases is emphasised
on the conceptual representation of real-world things, integration and
web-based communication of the DT data [1,8]. Thus, the use of graph
databases has been gaining traction within the built environment
domain.

Outlining the evolution of technologies and information models,
Howell and Rezgui [1] position the DT to be fully reliant on the IFC
models (in its OWL representation), ensuring semantic rich structured
data, which would form the foundation for more efficient ontology
based tools and agents. The knowledge base would therefore be posi-
tioned to offer a robust semantic, knowledge-driven data store, which
would in return be used as a resource to be fully exploited by AI
technologies, such as machine learning.

Table 1
List of articles and the abilities considered important to a Digital Twin across several industry sectors – ordered by number of occurrences.

No. Reference Domain What does a study consider as being part of a digital twin?

Prediction Simulation Monitoring Lifecycle Sensing Optimisation IoT AI BIM Knowledge base Linked data

1 [41] Manufacturing ✓ ✓ ✓ ✓ ✓
2 [45] Manufacturing ✓ ✓ ✓ ✓ ✓
3 [42] Smart cities ✓ ✓ ✓ ✓ ✓
4 [39] Aircraft ✓ ✓ ✓ ✓ ✓ ✓

5 [109] Systems ✓ ✓ ✓ ✓ ✓ ✓
6 [110] Aircraft ✓ ✓ ✓ ✓ ✓ ✓
7 [111] FM ✓ ✓ ✓ ✓ ✓ ✓ ✓
8 [38] Manufacturing ✓ ✓ ✓ ✓ ✓
9 [112] FM ✓ ✓ ✓ ✓ ✓ ✓ ✓

10 [44] Smart cities ✓ ✓ ✓ ✓ ✓ ✓ ✓
11 [3] Smart cities ✓ ✓ ✓ ✓ ✓ ✓ ✓
12 [9] ✓ ✓ ✓ ✓ ✓ ✓ ✓

13 [46] Manufacturing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
14 [113] AEC/FM, nuclear ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
15 [114] AEC/FM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
16 [107] Aircraft ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
17 [115] AEC, bridges ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
18 [43] Manufacturing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
19 [108] Manufacturing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
20 [8] Energy grids ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

21 [1] AEC/FM, smart cities, energy grids ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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4.3.3. Leveraging artificial intelligence
4.3.3.1. Simulation. The ability to simulate the real via the digital is a
core DT feature. The idealisation is that a DT should be able to simulate
the real world things with the highest level of fidelity [3]. Schluse et al.
[46] see potential in developing ‘experimental’ DTs, which would be
used to shift the experimentation of manufactured assets within the
virtual world using so called “virtual testbeds”, thus taking full
advantage of simulation-based engineering. While this high-fidelity
simulation virtual environment certainly seems feasible on smaller
scales for mass manufacturing [45], the expectations are different when
fixating on larger buildings, entire infrastructures or city districts. A
finite-element analysis of structural integrity on nuclear power plants is
important [113] as is for bridge lifecycle monitoring [115], but might
be less relevant for other buildings types. Thus, the level of simulation
applications and their respective levels of precision are expected to vary
by domain and use case. The platform which hosts a digital twin
therefore needs to be adaptable to these needs.

In the context of sensor-data based simulations, as is to be expected
for a DT, the input for the simulation is dependent on sensor quality,
their accuracy, precision, etc. In effect, this will influence the costs of
implementing sensing on site, versus the required precision for each use
case.

4.3.3.2. Artificial intelligence for prediction and optimisation. Generic and
imprecise references for ‘prediction’ and ‘optimisation’ are repeatedly
used. Additionally, the term AI itself encompasses a large spectrum of
methodologies, applications and technologies, such as Machine
Learning, Data Mining, Logics-based AI, Knowledge-based AI, etc.

The term ‘intelligence’, is usually referred to in a generic manner,
with a majority of studies considering DT to be AI supported, in order to
deal with IoT (sensing and actuation). Some studies consider AI to be a
vital component of a higher level computation, allowing the DT to
predict, optimise and take decisions dynamically. On the subject of
Digital Twin maturity levels, [107] consider that the higher levels
should allow the DT to be intelligent and adaptive, predicting and is-
suing warnings on the performance of the physical asset.

4.3.3.3. Prediction. Where simulations are able to reproduce the
physical conditions with high fidelity (using input data and initial
conditions), predictions need to be able to forecast successive
environment states in time (using the current and past values of
measured input and output values, as well as the initial conditions)
[122,123]. Predicting future asset behaviour or health status is a
common DT requirement. Terms such as “predictive modelling”
[43,107,113], “structural life prediction” [39], or even “predict and
act” [44] suggest that prediction should be used for immediate
actuation on the physical side as a response.

‘Big Data’ fed prediction [43,114] is a common view of leveraging
the use of IoT. However, the term ‘big data’ itself is ambiguous, en-
compassing not just size (volume), but also its speed of movement and
change (velocity), and several states of existence (variety) from un-
structured, semi-structured to structured data [124]. Thus, dealing with
large amounts of data has the potential to yield significant value to the
DT deployment [1,43]. Prediction techniques on big data often resort to
Machine learning or Data Mining, with the first focusing on reprodu-
cing known knowledge, while the latter focuses on discovering new
patterns and implicitly knowledge about the data itself. Machine
Learning is proposed by Howell and Rezgui [1] to act as the top layer
for smarter BIM-based building management. Similarly, Qi and Tao
[43] compare data analysis to DTs in a comprehensive manner, em-
phasising the need for an eventual fusion between the two, providing
overall interoperability and higher DT self-reliance. The challenge lies
in the gathering, cleansing and structuring methods used on the data
itself, which is later fused together for higher meaning and used for
processing intelligent tasks [108].

The reliability of the source data should also be cause for concern. A

distinction should be made on predictions based on real sensor data vs
simulated sensor data, or even a hybrid approach. Verifying the validity
of the prediction and its consequences on actuating the physical part
needs to be considered. In other words, are current AI methods ‘smart’
enough to make a viable decision in that regard?

4.3.3.4. Optimisation. If the DT is envisaged to include all aspects of the
physical twin in great detail (depending on domain and applied use
case), this creates an optimisation problem in terms of effectively
operating the asset according to a variety of objectives. The simulation,
prediction and optimisation abilities of a DT are inter-dependent and
act in unison in solving this problem. The decision-making (“what to
do?”) posed question of the optimisation process depends on the
simulated prediction (“what will happen?”) question [125].

In a similar way to the previous concepts using AI, the aspect of
optimisation is a broadly used term around the field of DT. The uni-
versal driver for optimisation appears to be reducing the costs of
manufacturing and operation of the Physical Twin. The primary use
case for the manufacturing industry is to optimise the entire process by
ensuring smart resource allocation [9,109], such as in the case of ex-
perimental test-beds looking to optimise the assembly algorithms [46].
For example, Alam and Saddik [109] make use of Bayesian networks to
represent the decision model within the field of engineering systems
design. For the built environment [1] and energy sectors [8], the
scaling of costs is significantly higher during the operation stage, where
balancing consumptions versus demand of energy and resources is the
primary challenge. The design and construction process of infra-
structure and buildings has a considerable impact on the operation
costs across the lifecycle. Unfortunately, the construction optimisation
goals do not always coincide with the operation ones, creating a rift
during the lifecycle period, thus setting the built environment apart
from manufacturing industries.

5. Recommendations for CDT realisation

Considering the current research landscape, this section aims to
highlight the key considerations associated with the deployment and
use of a DT during the construction stage, by looking at the perceived
DT abilities and features from adjacent domains, and super imposing
this onto construction site nD BIM uses. We consider the creation of a
DT to be a continuous, evolving process hence the last part of this
section introduces several generations of DT, depending on the im-
plemented technologies discussed previously in Section 4.3.

5.1. Digital twin abilities

Several recurring concepts in literature around the subject of DT are
defined in Table 2, which are segregated under the Virtual-Data-Phy-
sical paradigm in Fig. 5. We consider each sub-part as a feature or
“ability” of the DT, which are deemed important to facilitate specific
services. These abilities operate over the entire building lifecycle, but
change in terms of technologies and tools used at each stage. In addition
to the discussed concepts in Section 4.3, we consider actuation to be an
important ability which allows a DT to stimulate real world actions
whether reactive or proactive to environment changes.

5.2. CDT-enabled smart services

Within the manufacturing sector, the DT is referred to as having all
the “useful” information across the entire product lifecycle [40]. This
also applies to the building and infrastructure lifecycles, but at a much
larger scale and inherently different dynamics, influencing how we plan
and maintain our built environment with the use of digital assets. The
abilities of the CDT rely on the various process and data layers which
are aimed to facilitate smart construction services and applications
[106], as depicted in Fig. 5. These would benefit from a digital twin
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integration on several levels, assuming a robust framework is in place to
support the various heterogeneous systems and technologies en-
countered in research, as discussed in Section 4.2.

5.2.1. Enhanced site sensing
Current efforts for construction site sensing are limited to regular

laser scans, manual management updates and inputs in various forms
and documents carried out by human actors. By default, this limits the
capability of the BIM and eventual DT to accurately simulate and

Table 2
Identified Digital Twin abilities and their roles within the Virtual-Data-Physical paradigm.

Part Ability Description

The Physical Sense The ability to observe the physical world in real-time via the use of sensors.
Monitor The ability to keep track, inform and issue warnings on relevant physical alterations.
Actuate The ability to change/activate/deactivate physical components based on Virtual decisions/stimuli.

The Data BIM The ability to integrate and consume BIM specific data sets in its various formats and standards.
IoT The ability to integrate and share data communicated by Internet of Things devices.
Data linking The ability to integrate and share data via Semantic Web protocols.
Knowledge storing The ability to store facts about the system, support rules and reasoning capabilities.

The Virtual Simulate The ability to apply engineering simulation models from various application domains.
Predict The ability to predict the behaviour of the physical based on digital simulations and sensing.
Optimise The ability to apply optimisation methods and recommend smart allocation of resources dynamically.
Agency The ability to delegate AI agents capable of managing (and actuating) the physical based on digital data, following well-defined behaviours,

protocols and objectives.

Fig. 5. Construction Digital Twin data usage for facilitating smart construction services (based on Tao et al. [106]).
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predict in the nD modelling sense, given that the information is out-of-
date and out of sync with the physical twin (the real world). Therefore,
a substantial increase in the efforts for sensing the site is recommended
across the board (fixed sensors, video-feeds, tracking of vehicles and
resources, etc.), and enable a continuous and real-time flow of data
from the site to the virtual models.

5.2.1.1. Automated site progress monitoring. The analysed 4D BIM use-
cases show the forming trends and technologies used to capture site
data and automate the BIM during construction. The use-cases of safety
management, site monitoring and construction logistics as reviewed in
Section 4.2.2 rely on various novel methods and technologies to
monitor the site using photogrammetry and laser scanning on hand-
held mobile devices and aerial drones. These technologies employ
various processes on site scanning and reflecting that within the BIM
[60,63,118,127]. Several research initiatives previously addressed the
difficulty in making sense of the overwhelming amounts of data flowing
from a site to its digital model, as well as the challenges of equipping
and maintaining construction site sensors [117]. Thus, issues persist in
terms of validating the data (correctness and completion), correctly
interpreting it (applying semantics) and processing it in an effective
manner to facilitate real-time responses. The application of automated
site monitoring techniques would initially benefit site logistics
[60,116], safety [118] and subsequently reflect this in terms of
quality assessment and cost reductions long term.

5.2.1.2. Real-time multi-layered data visualisation. Visualisation is an
important subject within the construction sector, being at the core of
team communication and decision-making. Assuming a holistic and
enhanced real-time site monitoring, the idiom of “drowning in data” [7]
can be traversed by applying proven data visualisation techniques for
project management, benefiting of up-to-date, real-time data feeds from
multiple sources. Cross-checking and cross-referencing data from
different devices and models would bring forth more valuable
insights to users and construction site decision-making. Already
established nD BIM concepts and uses would become easier to
contrast and compare construction simulations to real-time site
developments.

5.2.2. Increased application of AI
Construction site dynamics levitate around effectively planning

tasks, keeping costs at predicted levels, and wisely utilising resources
(labour, equipment, etc.). Assuming a more integrated complex system,
the DT should be able to adapt scheduling and cost information auto-
matically according to dynamic site changes, trigger the correct esti-
mation algorithms and inform managers by issuing timely warnings on
disruptions as well as their possible causes.

5.2.2.1. Real-time site safety detection. Construction sites have
traditionally been amongst the most dangerous working
environments. Most studies and practitioners recognise the
advantages of using 4D modelling and agree that it brings an
inherent benefit to health and safety improvement. However, the
process of how to apply safety management following systematic and
meaningful workflows with clear indicators is still lacking considering
the way data is collected on-site. The fact that many subcontracting
companies work only temporarily on the sites, and that a large share of
the workforce consists of temporary workers makes safety management
a BIM use with constant data changes, which are often neglected or not
considered in a wider context.

Construction Digital Twins should collect information on the pre-
sence of workers on-site, including their numbers and locations. Besides
checking compliance to safety rules (e.g. wearing helmets) it could also
further detect eventual abnormal behaviours such as motionlessness,
fall, or even monitor their fatigue and attention during dangerous ac-
tivities [128]. Additionally, parallel virtual simulations of site safety

and evacuations could offer more insight into previously unforeseen
short term predictions on safety hazards and risks.

5.2.2.2. nD BIM clash detection simulation. In construction research, nD
modelling has been addressed in Section 4.2 where several references
discussed the simulation of 4D clashes. The added value being
demonstrated, such innovation often faces the reluctance of
construction practitioners, who often cannot rely on BIM data
completion or validity during construction. The associated human
effort to achieve such a BIM use is a key barrier, that automated
sensing may help overcome. Thus we consider the ability of sensing,
coupled to semantic enrichment of 4D/BIM models as a basis to carry
on 4D/nD clash detection simulations. The DT would therefore reflect
the status (as-is) and allow construction teams to run alternative (what-
if) planning simulations including building tasks as well as temporary
logistics activities or equipment allocations plans. Going further,
optimisation can be applied to the simulations in order to achieve the
optimised planning, or various other construction management
objectives.

5.2.2.3. Optimised construction logistics and scheduling. Construction
productivity suffers from a lack of integration of the processes and
supply-chains actors involved on-site and off-site. While micro-
management may improve the day-to-day work on-site, it is known
that it can also be realized if tasks are connected to pre-requisites
related to the whole supply chain (including logistics of delivery of
materials/equipment from off-site production systems). Lean
Construction methods, amongst others the Last Planner System [129],
usually rely on forms, collection of information from all parties and
look ahead planning. However, a lack of efficient information
integration on all levels persists. Semantic Digital Twin applications
promise the ability to connect the various planning systems, as well as
to link the heterogeneous datasets. Artificial Intelligence may also bring
added-value to human agents in such negotiation-intensive
management approaches, like advising the professionals on optimised
duration, sequencing etc. Likewise, the higher the traffic on site in
terms of people, vehicles and materials the more challenging it is. The
Semantic Digital Twin should enable pro-active modelling, tracking and
optimisation of construction processes and their associated off- and on-
site resources.

5.2.3. Holistic web-based integration
A fully semantic data environment brings several benefits, as pre-

viously mentioned in Sections 2.3 and 4.2.3, allowing the design and
construction supply chain to leverage web-based linked data. As-de-
signed BIMs can vary significantly during the construction phase, e.g.
specified equipment for a particular manufacturer may change during
purchase orders, optimising costs or unavailability of equipment within
the timeframe of the project. Linked data over the web with project
supplier databases, products and order changes can help reduce the
effects of such disruptions on productivity. Additionally, this would
improve the transition from handover to operation of the delivered
facility, by transferring a holistic context of vital suppliers and products
for use during future maintenance and potential renovations. Con-
versely, building components themselves can have a DT from a manu-
facturing domain, a core subject around DT in manufacturing (Section
4.3). Suppliers of intelligent DT products will have a need to monitor
and collect data about its use, customers and wider lifecycle context.

From the urban environment point of view, web-based integration
of IoT is demanded across the board, as evident from the literature.
Therefore, the transition from construction handover to operation
needs to be complemented by considering the wider urban level re-
quirements. This would also make the BIM more compatible by im-
proving urban level interoperability, where these technologies begin to
thrive, as was outlined in Section 4.3.
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5.3. Value chain of the construction process

When considering that the value chain management of a construc-
tion company is measured by increasing profits and adding value to its
customers while at the same time reducing costs of implementation, the
benefits of implementing a CDT should be carefully evaluated for each
project type (based on size, client needs, procurement methods, etc).
With BIM now being part of the initial procurement and the design-
construction-demolition stages, the emphasis of the CDT should be at
the pre-construction and construction stages when the “Physical Twin”
gets built. While BIM processes and models are able to facilitate im-
proved collaboration through the use of common standards and formats
(as discussed in Sections 2.1, 4.2.3 and 4.3.2), a BIM paradigm is lim-
ited when in the scope of IoT and dynamic site data. A CDT assumes a
cohesive integration of models, sensors and services, enhanced by
synchronicity. This value can be unlocked through semantic web
technologies, as was argued in the previous section. Enhanced con-
struction services (Fig. 5), would implicitly benefit from an increased
level of integration and automation, allowing construction workflows
to better allocate resources between tasks which are better performed
by robots, drones and sensors, and those which require human input.

The importance of using digital twins is measured in the added
value to society by strengthening the lower carbon emission and clean
energy agendas. Current research challenges lie in the capability to
adapt to the complex social systems which exist around our built en-
vironment. The dynamics of human interaction with built assets is often
a limitation of many intelligent building management systems, which
need to better adapt and respond to occupant needs, while at the same
time optimise the use of resources. Transposing this to the construction
site, a CDT should be able to access the full data of the construction
project, grasp the holistic context and return valuable insights.
Additionally, users from different social and educational backgrounds
should be able to interface with the CDT, which is set to vary according
to application domains over the lifecycle [46].

5.4. A progressive evolution approach

Considering the current research landscape around the concept of
DT, we propose an evolutionary 3-tier level CDT paradigm, as re-
presented in Fig. 6. Other similar industry views have been taken into
account [37,130], with [130] outlining a five stage process of creating a
DT during a construction stage. However, there is still a lack of clarity
on the potential technologies for higher tiers, mainly due to a lack of
implementation and research at such levels of sophistication. We con-
sider the implementation efforts for a CDT to be gradual, but con-
tinuous over the building lifecycle, while considering the supply chain
integration and the sophistication of technologies adopted. The even-
tual merge between virtual models and sensing would converge on a
common semantic web platform. The transition from legacy tools and
formats depends on the application domains and existing models to
adopt, but would prove an invaluable step towards interoperability and
expansion into future lifecycle stages. The adoption of advanced forms
of AI represents the final step, which is expected to progress after suf-
ficient training and verification of the AI behaviour is carried out; this
represents the transition of certain tasks from human expert control and
guidance to limited DT agency.

5.4.1. Generation #1 – monitoring platforms
The initial attempt at a DT, monitoring platforms enable sensing of

the physical, with some degree of reporting and analysis capabilities.
Actuation on the physical world is restricted to imbedded emergency
procedures. The virtual data models at this stage can consider legacy
digital models. This should be considered as the first step towards the
real-time integration of site sensing and digital models, offering limited
insights open to user interpretation and decision-making. This step is an
enhanced version of BIM on construction sites to date. However, the

BIM on its own cannot deliver all the information requirements for
subsequent lifecycle stages, nor is it extensible for including more
complex computations (prediction, optimisation).

5.4.2. Generation #2 – intelligent semantic platforms
Taking the first major step towards semantics, these are enhanced

monitoring platforms with limited intelligence where a common web
language framework is deployed to represent the DT with all its in-
tegrated IoT devices, thus forming a knowledge base. Limited in-
telligence is achieved via the use of embedded knowledge rules, and
separate AI-based algorithms for enabling simulations and predictions.
Optimisation would be a process largely carried out by trained human
actors. Actuation capabilities are limited to security, safety and energy
consumption, issuing detailed warnings and recommendations re-
quiring user validation and authorisation for more complex situations.

However, a building does not live in isolation and should therefore
be regarded from the perspective of the city district level. Interactions
with its immediate environment (city traffic, pollution, social events,
etc.) should be considered for a larger construction site management
context. This projects the DT into a complex socio-technical dilemma,
where the DT needs to adapt and respond in real time to its users and
dynamic changes which occur on a daily basis.

5.4.3. Generation #3 – agent driven socio-technical platforms
The apex of the DT implementation possible to date represents a

fully semantic DT, leveraging acquired knowledge with the use of AI-
enabled agents. Machine learning, deep learning, data mining and
analysis capabilities are required to construct a self-reliant, self-upda-
table and self-learning DT. Optimisation would be fully entrusted to the
DT's goals and learning patterns. In addition to the semantic layer, the
social aspects of the building need to be considered. Enabling a user-
driven experience is mandated, where the DT can adapt to social re-
quirements and engage with end-users to support holistic decision-
making. Actuation of the environment becomes fully autonomous to the
DT system, requiring human supervision.

6. Conclusion

This article advocates that in order for BIM to adapt to newer, more
integrated approaches on micro (construction site) and macro (city
districts) levels, the adoption of a Digital Twin paradigm is required.
The construction industry sector has already made magnificent strides
since the conception of BIM, and has gained sufficient recognition and
momentum to enable a shift from a static, closed information en-
vironment to a dynamic, web-based one, embracing IoT integration and
a higher degree of AI implementation. This would help deliver smarter
construction services, increased automation and information cohesion.

Current research landscape around the subject of BIM uses was
outlined (Section 4.2), tackling the first of three research objectives.
This reveals current trends and the more recent technologies employed
during design and construction. Although nD modelling has been a
research subject for several decades, the level of collaboration between
systems and actors which use it is still relatively weak. Although
schemas like the IFC have contributed to overall industry collaboration,
the complex nature of nD models, their overall lack of cohesion and out-
of-sync issues, comprised by the many use-cases applied at design and
construction stages has left the BIM lacking in terms of interoperability
and automation. This presents a serious challenge for the creation of a
comprehensive Construction Digital Twin, which demands a real-time
connection to the Physical Twin and all its relevant components.

An analysis of the DT paradigm from nearby engineering domains
(Section 4.3) was carried out, tackling the second research objective.
This reveals disparate potential methods and technologies to be con-
sidered for DTs. The use of several technologies ranging from sensors,
IoT, simulation models and AI, was compiled and presented from a
“Physical-Data-Virtual” paradigm perspective, as introduced in Section
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2.3. Within the symbiotic relationship between the physical and virtual
parts of the DT, BIM is often treated as a DT sub-component. In-
stinctively, this is because in the case of buildings and infrastructure,
the conception of the DT begins with the BIM, which is the digital re-
presentation of the building, enriched by the addition of sensing cap-
abilities, big data and the Internet of Things from site to building op-
eration. Several important overlaps are identified from the conception
of BIM during design, its enrichment during construction, and its
completion towards becoming a valid DT.

Following the logical thread from BIM to DTs, the final research
objectives are tackled in Section 5. The article lists several DT abilities
or features which would enable real-time, web integrated, intelligent
CDTs (Section 5.1). These abilities were then extrapolated onto the
construction site landscape (Section 5.2), where existing methods and
tools can be greatly enhanced to provide overall smarter construction
services. The change from the static nature of information exchanges
using the IFC format, to a more open, web linked data paradigm would
ensure that the right data is available at the right time. This would
represent the first step towards finding the undiscovered methods and
tools which would allow the delivery of more intelligent, automated
construction sites and built environments.

The eventual added value that a digital twin would convey is not
just the abundance of dynamic data it would manage, but also its
meaning (semantics), and its constant accrual of knowledge about the
physical world. The benefits to the built environment are in the long
term, from a smart and lean construction process towards a smart
lifecycle management. This would inherently deliver improved lifecycle
costs, built asset resilience and reduced carbon emissions, in an ever-
increasing environmental aware society.

6.1. Limitations of review method

This article presents a conceptual framework for realising a CDT

mostly based on a review of the existing literature. The authors have
presented their world view based on the analysis of 196 research arti-
cles. Due to the design of the research methodology, not all aspects of
nD BIM or DT fell within the scope of this review, therefore leaving out
some trails around the subject. To compensate for the statistical view of
the results, an in-depth review was conducted to bring out the essential
works and discuss aspects considered important for debate for future
construction industry research. Additionally, topics like cyber-security
issues of large scale infrastructure will probably remain the main issue
for years to come, which is not addressed here.
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