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Intellectual Property Rights 
Essential patents  

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information 
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found 
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in 
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web 
server (https://ipr.etsi.org/). 

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee 
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web 
server) which are, or may be, or may become, essential to the present document. 

Trademarks 

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. 
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no 
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does 
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks. 

Foreword 
This Group Report (GR) has been produced by ETSI Industry Specification Group (ISG) Secure AI (SAI). 

Modal verbs terminology 
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be 
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions). 

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation. 
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1 Scope 
The present document summarizes and analyses existing and potential mitigation against threats for AI-based systems 
as discussed in ETSI GR SAI 004 [i.1]. The goal is to have a technical survey for mitigating against threats introduced 
by adopting AI into systems. The technical survey shed light on available methods of securing AI-based systems by 
mitigating against known or potential security threats. It also addresses security capabilities, challenges, and limitations 
when adopting mitigation for AI-based systems in certain potential use cases. 

2 References 

2.1 Normative references 
Normative references are not applicable in the present document. 

2.2 Informative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 

[i.1] ETSI GR SAI 004: "Securing Artificial Intelligence (SAI); Problem Statement". 

[i.2] Doyen Sahoo, Quang Pham, Jing Lu, Steven C. H. Hoi: "Online Deep Learning: Learning Deep 
Neural Networks on the Fly", International Joint Conferences on Artificial Intelligence 
Organization, 2018. 

NOTE: Available at https://doi.org/10.24963/ijcai.2018/369. 

[i.3] Battista Biggio and Fabio Roli: "Wild patterns: Ten years after the rise of adversarial machine 
learning", Pattern Recognition, 2018.  

[i.4] Qiang Liu, Pan Li, Wentao Zhao, Wei Cai, Shui Yu and Victor C. M. Leung: "A Survey on 
Security Threats and Defensive Techniques of Machine Learning: A Data Driving View". IEEE 
Access 2018. 

NOTE: Available at https://doi.org/10.1109/ACCESS.2018.2805680. 

[i.5] Nicolas Papernot, Patrick D. McDaniel, Arunesh Sinha and Michael P. Wellman: "SoK: Security 
and Privacy in Machine Learning". IEEE European Symposium on Security and Privacy 
(EuroS&P) 2018. 

[i.6] Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang and Anil K. Jain: 
"Adversarial Attacks and Defenses in Images, Graphs and Text: A Review". International Journal 
of Automation and Computing volume 17, pages151-178(2020). 

NOTE: Available at https://doi.org/10.1007/s11633-019-1211-x. 

[i.7] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, Debdeep 
Mukhopadhyay: "Adversarial Attacks and Defences: A Survey", arXiv preprint 
arXiv:1810.00069v1. 

NOTE: Available at https://arxiv.org/abs/1810.00069.  
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[i.8] Yingzhe He, Guozhu Meng, Kai Chen, Xingbo Hu, Jinwen He: "Towards Privacy and Security of 
Deep Learning Systems: A Survey". IEEE Transactions on Software Engineering 2020. 

[i.9] NIST IR 8269-(Draft): "A Taxonomy and Terminology of Adversarial Machine Learning". 

NOTE: Available at https://doi.org/10.6028/NIST.IR.8269-draft. 

[i.10] Christian Berghoff1, Matthias Neu1 and Arndt von Twickel: "Vulnerabilities of Connectionist AI 
Applications: Evaluation and Defence", Frontiers in Big Data volume 3, 2020. 

NOTE: Available at https://doi.org/10.3389/fdata.2020.00023. 

[i.11] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D. Joseph, Benjamin I. P. Rubinstein, 
Udam Saini, Charles A. Sutton, J. Doug Tygar, Kai Xia: "Exploiting Machine Learning to Subvert 
Your Spam Filter", Usenix Workshop on Large-Scale Exploits and Emergent Threats (LEET) 
2008. 

[i.12] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, Bo Li: 
"Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression 
Learning", IEEE Symposium on Security and Privacy 2018: 19-35. 

[i.13] Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, Jaehoon Amir Safavi: "Mitigating Poisoning 
Attacks on Machine Learning Models: A Data Provenance Based Approach", AISec@CCS 2017: 
103-110. 

NOTE: Available at https://doi.org/10.1145/3128572.3140450. 

[i.14] Sanghyun Hong, Varun Chandrasekaran, Yigitcan Kaya, Tudor Dumitras, Nicolas Papernot: "On 
the Effectiveness of Mitigating Data Poisoning Attacks with Gradient Shaping", arXiv: 
2002.11497v2.  

NOTE: Available at https://arxiv.org/abs/2002.11497v2. 

[i.15] Nitika Khurana, Sudip Mittal, Aritran Piplai, Anupam Joshi: "Preventing Poisoning Attacks On AI 
Based Threat Intelligence Systems", IEEE International Workshop on Machine Learning for 
Signal Processing (MLSP) 2019: 1-6. 

NOTE: Available at https://doi.org/10.1109/MLSP.2019.8918803. 

[i.16] Battista Biggio, Igino Corona, Giorgio Fumera, Giorgio Giacinto, Fabio Roli: "Bagging Classifiers 
for Fighting Poisoning Attacks in Adversarial Classification Tasks", International Workshop on 
Multiple Classifier Systems (MCS) 2011: 350-359. 

NOTE: Available at https://doi.org/10.1007/978-3-642-21557-5_37. 

[i.17] Yao Cheng, Cheng-Kang Chu, Hsiao-Ying Lin, Marius Lombard-Platet, David Naccache: "Keyed 
Non-parametric Hypothesis Tests", International Conference on Network and System Security 
(NSS) 2019: 632-645. 

NOTE: Available at https://doi.org/10.1007/978-3-030-36938-5_39.  

[i.18] Tran, Brandon, Jerry Li, and Aleksander Madry: "Spectral signatures in backdoor attacks", In 
Advances in Neural Information Processing Systems, pp. 8000-8010. 2018. 

[i.19] Chen, Bryant, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung 
Lee, Ian Molloy and Biplav Srivastava: "Detecting backdoor attacks on deep neural networks by 
activation clustering", Artificial Intelligence Safety Workshop @ AAAI, 2019. 

[i.20] Yuntao Liu, Yang Xie, Ankur Srivastava: "Neural Trojans", 2017 IEEE International Conference 
on Computer Design (ICCD), Boston, MA, 2017, pp. 45-48, doi: 10.1109/ICCD.2017.16. 

NOTE: Available at https://doi.org/10.1109/ICCD.2017.16. 
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[i.21] Bingyin Zhao and Yangjie Lao: "Resilience of Pruned Neural Network against poisoning attack", 
International Conferecne on Malicious and Unwanted Software (MALWARE) 2018, page 78-83. 

NOTE: https://doi.org/10.1109/MALWARE.2018.8659362. 

[i.22] Liu, Kang, Brendan Dolan-Gavitt and Siddharth Garg: "Fine-pruning: Defending against 
backdooring attacks on deep neural networks", In International Symposium on Research in 
Attacks, Intrusions and Defenses, pp. 273-294. Springer, Cham, 2018. 

NOTE: Available at https://doi.org/10.1007/978-3-030-00470-5_13. 

[i.23] Wang, Bolun, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng and Ben 
Y. Zhao: "Neural cleanse: Identifying and mitigating backdoor attacks in neural networks", In 
2019 IEEE Symposium on Security and Privacy (SP), pp. 707-723.  

[i.24] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn Song. 2019: "Tabor: A highly accurate 
approach to inspecting and restoring trojan backdoors in ai systems", arXiv preprint 
arXiv:1908.01763v2 (2019). 

NOTE: Available at https://arxiv.org/abs/1908.01763v2. 

[i.25] Yansong Gao, Chang Xu, Derui Wang, Shiping Chen, Damith C.Ranasinghe, Surya Nepal: 
"STRIP: A Defence Against Trojan Attacks on Deep Neural Networks", 2019 Annual Computer 
Security Applications Conference (ACSAC '19). 

[i.26] Chou Edward, Florian Tramèr, Giancarlo Pellegrino: "sentiNet: Detecting Localized Universal 
Attack Against Deep Learning Systems", The 3rd Deep Learning and Security Workshop (2020). 
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3 Definition of terms, symbols and abbreviations 

3.1 Terms 
For the purposes of the present document, the following terms apply: 

adversarial examples: carefully crafted samples which mislead a model to give an incorrect prediction 

conferrable adversarial examples: subclass of transferable adversarial examples that exclusively transfer with a target 
label from a source model to its surrogates 

distributional shift: distribution of input data changes over time 

inference attack: attacks launched from deployment stage 

model-agnostic mitigation: mitigations which do not modify the addressed machine learning model 

model enhancement mitigation: mitigations which modify the addressed machine learning model 

training attack: attacks launched from development stage 

transferable adversarial examples: adversarial examples which are crafted for one model but also fool a different 
model with a high probability 

3.2 Symbols 
Void. 
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3.3 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

AE Adversarial Example 
AI Artificial Intelligence 
API Application Interface 
BDP Boundary Differential Privacy 
BIM Basic Iterative Method 
CNN Convolutional Neural Network 
CW Carlini & Wagner (attacks) 
DNN Deep Neural Network 
DP-SGD Differential-Privacy Stochastic Gradient Descent 
FGSM Fast Gradient Sign Method 
GNN Graph Neural Network 
ILSVRC ImageNet Large Scale Visual Recognition Challenge 
IP Intellectual Property 
JPEG Joint Photographic Experts Group 
JSMA Jacobian-based Saliency Map 
KNHT Keyed Non-parametric Hypothesis Tests 
L-BFGS Limited-Memory Broyden–Fletcher–Goldfarb–Shanno (algorithm) 
ML Machine Learning 
MNIST Modified National Institute of Standards and Technology 
MNTD Meta Neural Trojan Detection 
PATE Private Aggregation of Teacher Ensemble 
PCA Principal Component Analysis 
PGD Project Gradient Descent 
PRADA Protecting Against DNN Model Stealing Attacks 
ReLU Rectified Linear Unit 
RNN Recurrent Neural Network 
RONI Reject On Negative Impact 
SAI Securing Artificial Intelligence 
SAT Satisfiability 
SGD Stochastic Gradient Descent 
SMT Satisfiability Modulo Theories 
STRIP STRong Intentional Perturbation 
TRIM Trimmed-based algorithm 
ULP Universal Litmus Pattern 

4 Overview 

4.1 Machine learning models workflow 
Artificial intelligence has been driven by the rapid progress in deep learning and the wide applications of deep learning, 
such as image classification, object detection, speech recognition and language translation. Therefore, the present 
document focuses on deep learning and explores existing mitigations countermeasuring attacks on deep learning. 

A machine learning model workflow is represented in Figure 1. The model life-cycle includes both development and 
deployment stages. The training dataset is the subset of domain data samples used to train the model, and it can be 
obtained from one or multiple data sources, represented in Figure 1 as data supply chain. A pretrained model can be 
used as input to create the target model. At development stage, via the training dataset, the model is trained. The trained 
model is then tested. Pursuant to ETSI GR SAI 004 [i.1], the testing step will include functional test and adversarial 
test. At deployment stage, the trained and tested model is deployed, i.e. becomes the model in operation. Given 
inference input, the model in operation delivers an output. In Figure 1, the dotted lines from the model in operation 
back to the model under development capture the model updates in online learning scenarios [i.2]. Updates can be pairs 
of inference input and user feedback, served as new training data to refine the model. Updates can also be locally-
computed model parameter refinements. These multiple dotted lines between the model under development and the 
model in operation capture the federated learning scenarios, where a global model is distributed among several entities 
and entities provide model updates to refine the global model. 
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Attack types described in ETSI GR SAI 004 [i.1] are classified into two main categories, i.e. training attacks which 
occur during development stage and inference attacks which occur during deployment stage. Training attacks include 
poisoning attacks and backdoor attacks while inference attacks include evasion attacks and reverse engineering attacks. 
Model stealing attacks and data extraction attacks are two subtypes of reverse engineering attacks. Some state-of-the-art 
adversarial machine learning papers [i.3], [i.4], [i.5], [i.6], [i.7], [i.8] and reports [i.9], [i.10] provide more details of 
existing attacks against deep learning systems. Existing mitigations for poisoning attacks, backdoor attacks, evasion 
attacks, model stealing attacks and data extraction attacks are summarized and analysed in the present document. 

 

Figure 1: Machine learning model workflow 

4.2 Mitigation strategy framework 
Mitigations are summarized as approaches in a framework where a feasible strategy can be built against attacks under 
specific assumptions. In addition to being categorized by which attack they address, mitigations are further classified by 
whether the addressed model is modified when the mitigation is applied.  

NOTE 1: The addressed model refers to the addressed machine learning model. The two mitigation categories are 
named as model enhancement mitigations and model-agnostic mitigations, where model enhancement 
mitigations modify the addressed model whereas model-agnostic mitigations do not. Model modification 
here emphasizes on model internal change, such as modifying parameters, reducing neurons, and 
changing optimizers and loss functions. 

EXAMPLE 1: Adversarial training updates model parameters and thus is a model enhancement mitigation. 

EXAMPLE 2: Ensemble techniques where a model is combined with other models as a whole are model-
agnostic. 

The intuition of this classification is to indicate whether the model in operation is modified when certain mitigations are 
applied. In some cases, updating deployed models is not possible, and model-enhancement mitigations are the only 
mitigations possible. 

In most cases, mitigations in development stage usually modify the addressed model, while mitigations in deployment 
stage do not. However, in some application scenarios, the distinction is blurred. For instance, in online learning 
scenarios, pairs of inference input and user feedback are taken as new training data to refine the model. Then model-
enhancement mitigations are possible for the deployed model. 

Mitigation approaches are summarized in Table 1. 
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NOTE 2: It is an active research area that how mitigation approaches against different attacks interfere each other. 

Table 1: Mitigation Strategy Framework 

Attack Types Model Enhancement Mitigation 
Approaches  

Model-agnostic Mitigation 
Approaches  

Training 

Poisoning attack 

Clause 5.2.2 Clause 5.2.3 
  Enhance data quality 
  Data sanitization 
  Block poisoning 

  Output restoration 

Backdoor attack 

Clause 5.3.2 Clause 5.3.3 
  Enhance data quality 
  Data sanitization 
  Trigger detection 
  Model restoration 

  Trigger detection 
  Trigger deactivation 
  Backdoor detection 

Inference 

Evasion attack 

Clause 6.2.2 Clause 6.2.3 
  Data preprocessing 
  Model hardening 
  Robustness evaluation 

  AE detection 
  Input restoration 
  Output restoration 

Model stealing 

Clause 6.3.2 Clause 6.3.3 
  IP management   Limit the number of queries 

  Stealing detection 
  Output obfuscation 
  Fingerprinting 

Data extraction 
Clause 6.4.2 Clause 6.4.3 

  Embed data privacy 
  Training with privacy  

  Limit the number of queries 
  Obfuscated confidence scores 

 

5 Mitigations against training attacks 

5.1 Introduction 
Mitigations against training attacks are summarized and analyzed in clause 5, i.e. mitigations to protect the machine 
learning model from poisoning attacks and backdoor attacks. 

Poisoning attacks are those where attackers tamper with the learning process by injecting adversarial data samples or 
modifying some data samples in the training dataset such that the resulting trained model has degraded accuracy. The 
poisoned dataset can contain mislabeled or confused data samples. Backdoor attacks aim at embedding malicious 
functionalities into the model. Attackers firstly embed a backdoor (also called Trojan) into the addressed model during 
the training phase. At inference time, the resulting model behaves as normal for clean inputs. However, when attackers 
feed an input containing a special pattern, so-called trigger, to the model, the model misbehaves, i.e. outputs attacker-
intended results. As mentioned in ETSI GR SAI 004 [i.1], the attacker-intended results can be a targeted-and-incorrect 
output (integrity violation), or an output revealing (part of) the training dataset (confidentiality violation). 

Poisoning attacks and backdoor attacks are different in terms of attack purposes and technical approaches. Poisoning 
attacks compromise the model functionality while backdoor attacks aim at embedding backdoors and triggering them 
later on. Backdoor attacks can use poisoning as part of the attack, but there are alternative means. 

Existing mitigations against poisoning attacks and backdoor attacks are summarized and analyzed in clauses 5.2 and 
5.3. To analyze existing mitigations, three major metrics are taken, i.e. model accuracy, mitigation overhead and model 
robustness. 
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5.2 Mitigating poisoning attacks 

5.2.1 Overview 
Poisoning attacks aim to degrade model performance on a broad set of inputs and are generally considered attacks on 
availability as described in ETSI GR SAI 004 [i.1]. This classification is based on the fact that poisoning attacks have 
been observed in inherently adversarial settings (such as spam filters), where they usually try to increase 
misclassification to the point of making the system barely usable, thus hampering availability of its proper functionality. 

Such attacks are particularly relevant in case the distribution of input data changes over time (distributional shift) and 
frequent model updates are used for keeping up with this change. In this case, procuring trustworthy data sets for 
training takes a lot of effort. Unlike situations without significant distributional shift, this is not a one-time, but a 
constant effort. 

A common feature of environments that are susceptible to poisoning attacks is the intrinsically adversarial setting. 
Those environments face a quickly changing attack landscape, and are themselves attractive targets for attackers. 

EXAMPLE 1: Spam filters, malware scanners, firewalls and intrusion detection systems. 

If the input data distribution is stable and models are not frequently updated, poisoning attacks are easy to detect during 
the testing phase. This assumes that the test data set is sufficiently large and representative for the data distribution. In 
particular, for detecting more targeted poisoning attacks that only decrease performance on some subset of inputs, more 
targeted and fine-grained testing can be performed.  

EXAMPLE 2: For classifiers, measuring model performance not only over the entire data set, but also per class. 

Existing approaches against poisoning attacks are summarized in Figure 2. 

 

Figure 2: Approaches of mitigation techniques against poisoning attacks 

5.2.2 Model enhancement mitigations against poisoning attacks 
Enhance data quality is a model enhancement approach in data supply chain: 

  One mitigation is to protect the data supply chain against manipulations to thwart attacks which tamper with or 
degrade the quality of training data. The risk for incorrect or manipulated data is much lower if data is sampled 
from a controlled environment. 
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NOTE: In the adversarial settings, protecting data supply chain takes substantial effort or can even be infeasible. 

  A general method in pre-processing data as a means to minimize risks of data manipulations was proposed in 
[i.15]. It tries to estimate the quality of candidate training data and only uses data of sufficient quality for 
training the model. The authors consider the use-case of threat intelligence systems and use semi-supervised 
learning to judge the trustworthiness of data. The limitation of this approach consists in that it mostly considers 
increasing data quality with respect to benign problems (such as unintentional wrong labelling) and does not 
address targeted and optimized attacks. 

Data sanitisation is a technique which aims to detect individual data points that have a negative impact on the model's 
performance and to exclude them from the final training dataset. Many variants of this approach have been explored: 

  RONI (Reject on negative impact, [i.11]): RONI was the first proposal and identifies outliers by training the 
model with and without each point and comparing the performance. Due to frequently retraining the addressed 
model, RONI's run-time overhead is significant, and its performance is also worse than later proposals. 

  TRIM [i.12] iteratively estimates the model parameters and trains on the subset of best-fitting input points at 
the same time, until convergence is reached. Its results are much better than those of RONI. However, TRIM is 
devised for linear regression only and thus not applicable to (deep) neural networks. 

  Provenance-based [i.13]: another extension of RONI uses (presumably correct) meta data about data 
provenance and first clusters data accordingly. Due to the additional information used, this approach achieves 
better results than RONI and is more efficient by a certain factor (essentially, the average cluster size), since 
the model does not need to be retrained for each individual point but only the cluster centroids. The intuition of 
[i.13] is that for data points of common provenance the probability of being poisoned is strongly correlated. 
Applying this technique assumes the existence and correctness of information on data provenance. 

  Keyed Non-parametric Hypothesis Tests (KNHT) [i.17] assumes a set of clean training data which describe 
intended data distribution and inspect newly-collected ones. The rationale is to compare the two set of data and 
if their similarity is insufficient, the newly collected ones are further inspected. KNHT does the data 
distribution comparison after mapping the two data distributions into another space via a set of functions with 
secret keys. 

With the focus on the addressed model, blocking poisoning can be performed by blocking online learning and also 
during model training process. One example of blocking poisoning during model training process is as follows. 

  Gradient shaping [i.14] starts from the new insight that poisoning (and backdoor) attacks exhibit larger 
gradients with differing orientations for poisoned data as compared to clean data. Hence, gradient shaping 
aims to prevent these properties in the gradients from occurring during model training (e.g. by cropping large 
values). The gradient shaping technique does not use additional information about the training dataset, and its 
run-time overhead is negligible. The results presented in [i.14] look quite promising for several attacks, but 
like other approaches, the strategy cannot thwart strong state-of-the-art attacks. 

5.2.3 Model-agnostic mitigations against poisoning attacks 
At the deployment stage, different models can also be combined as a final model to restore output. One example 
method is bagging ensembles [i.16], where the data sets used for training are assumed not identical, since the attack 
itself is carried out through the training dataset. In the most threatened applications, this condition is again hard to 
satisfy, since the availability of a sufficient amount of trustworthy data is the fundamental problem. 

5.3 Mitigating backdoor attacks 

5.3.1 Overview 
Backdoor attacks involve two main steps: backdoor embedding and triggering. Thus, existing mitigations against 
backdoor attacks focus on detecting and removing backdoors and triggers based on different knowledge requirements, 
i.e. training datasets, models (full knowledge, partial knowledge or zero knowledge), and inference input. In 
development stage, backdoors and triggers can be detected and even removed by modifying the addressed model. In 
deployment stage, backdoor detection aims at revealing potential weaknesses of the addressed model and trigger 
detection goal is to prevent backdoors being triggered. In Figure 3, some model enhancement and model-agnostic 
mitigation approaches are shown with examples. 
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Figure 3: Approaches of mitigation techniques against backdoor attacks 

5.3.2 Model enhancement mitigations against backdoor attacks 
Model enhancement methods aim at removing triggers and backdoors from training dataset and the addressed model at 
development stage. 

With the focus on training datasets, enhancing data quality, data sanitization and trigger detection are three 
approaches. Poisoning attacks are a mean of implementing backdoor attacks; hence, enhancing data quality and data 
sanitization techniques against poisoning attacks are also effective to stop backdoor attacks. 

Trigger detection from the training dataset is another approach to discover triggers and then remove them. Detection 
methods are based on some statistics difference observed between input with triggers and from benign inputs. However, 
those observations can be unique for some specific datasets. Here are some existing trigger detection methods with 
regard to training datasets: 

  Spectral signature [i.18]: it is observed that spectral signatures can be used to identify and remove poisoned 
inputs, where spectral signatures are the spectrum of the covariance of a feature representation learned by the 
neural network. 

  Activation clustering [i.19]: triggers can be detected from the neuron activation in the final hidden layer of a 
network. It is observed that input with triggers have different patterns of neuron activation from benign input. 
Hence, by using unsupervised clustering on neuron activation in the final hidden layer, input with triggers can 
be identified. The addressed model can then be retrained excluding triggers. 

With the focus on the addressed model, model restoration is one approach. One potential way to do so is to detect 
and remove backdoors from the model. But model restoration can also be done without backdoor detection. Here are 
some existing model restoration methods: 

  Retraining [i.20]: retraining the model with a small subset of clean training data is explored for correcting 
backdoor-embedded neural networks. 

  Fine-pruning [i.22]: pruning a neural network eliminates some less important neurons [i.21]. It is a means of 
raising the success bar of backdoor attacks at some cost of accuracy. Pruning technique is effective when 
attackers are unaware of pruning protection. Fine-pruning retrains the model after pruning to address pruning-
aware backdoor attacks. By applying fine-pruning, a backdoor-embedded neural network can be restored. 
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  Neural-Cleanse [i.23]: small input perturbations are reverse engineered from the model. Those perturbations 
trigger backdoor behavior in the model and then a backdoored class can be identified. The addressed model 
can then be patched by retraining with purified data. This process does backdoor un-learning. Neural cleanse 
method relies on an assumption that the trigger for the backdoor-infected class is smaller than the median size 
of the reverse engineered trigger for all classes. This assumption fails when triggers have various sizes. 

  TABOR [i.24]: the backdoor detection task is transformed to a non-convex optimization problem with a 
newly-designed objective function to narrow down search space. Hence, input with triggers can be efficiently 
reverse-engineered. After triggers are found, by retraining the model with purified data, the model can be 
restored. 

5.3.3 Model-agnostic mitigations against backdoor attacks 
One model-agnostic method is to increase the quality of training data and to thwart attacks by protecting the data supply 
chain against manipulations. When data is sampled from a well-controlled environment, the training data quality is 
higher. Hence, the risks for incorrect or manipulated data are lower. Model-agnostic methods can also be developed for 
deployment stage. By analyzing given inference data samples and the addressed models, triggers and backdoors can be 
detected or deactivated at run-time at deployment stage. 

NOTE: Most existing methods require a number of queries to the model to tell if one input contains a trigger. 

With the focus on inference data samples, trigger detection and trigger deactivation are two approaches. After triggers 
are detected, they can be deactivated. But trigger deactivation can be done without trigger detection. 

When a trigger is detected from a given inference data sample, the data sample can be treated separately. For instance, 
the data sample can be discarded or purified by noising the trigger or removing the trigger. Some existing methods of 
trigger detection are summarized below: 

  STRIP [i.25]: a runtime trigger detection scheme is designed based on an assumption that an input with trigger 
is insensitive to perturbations. By applying a set of perturbations, a given inference input is then represented as 
a set of data samples. The classification entropy introduced by the set of data samples is a quantitative measure 
on how likely the given inference input contains a trigger. Inputs with low classification entropy even when 
applied strong perturbations are unlikely to be benign. The assumption is not universal. But this method does 
not require to know model parameters and can be performed at run-time. 

  SUTO-NEO [i.27]: it is a trigger detection and prediction restoration scheme for image classification task. 
With an assumption that only one trigger exists and the trigger location is fixed on the image, an input image 
can be analyzed to see if a trigger exists. Given an input image, the potential trigger location can be searched 
by comparing classification results of the intact image and the image with a dominant color block at a random 
position. If the results diverse, the position likely has a trigger. To further confirm about it, the image block 
covered by the color block is implanted to other known-results training images. If those known-result training 
images with the patched image block have different prediction results from before, the position and the trigger 
are confirmed. To restore the classification result, the image with a trigger is patched with a block of the 
dominate color and then the corresponding predication can be restored. 

  SentiNet [i.26]: by combining techniques of model interpretability and object detection, SentiNet is a mean of 
trigger detection at run-time against localized and universal backdoor attacks on image classifiers. It can detect 
more than one trigger with various sizes. 

Trigger deactivation intends to stop backdoors being triggered. One way is to detect and remove triggers, but there are 
means of trigger deactivation without knowing the triggers. One existing method is described below: 

  Februus [i.28]: researchers proposed a trigger deactivation method by input restoration technique against 
input-agnostic triggers. They analyzed which region of the input has the most impact on the classification 
result via visual explanation tool GradCAM [i.29] and then deactivate potential triggers. The most influential 
region is replaced by a neutralized color box and then the masked input is restored by generative adversarial 
networks. This method needs access to not only the model but also the training dataset.  
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With the focus on the addressed deep learning model, one approach is to detect whether the model contains a 
backdoor. Here are some existing backdoor detection methods: 

  Trigger reverse engineering: as described earlier, neural cleanse method [i.23] and TABOR [i.24] both consist 
of two steps. The first step is to reverse engineer triggers from the addressed model and the second step is to 
retrain the model by purified data Although at deployment stage, the retraining step cannot be performed, the 
knowledge of triggers from the first step helps on detecting backdoored models. 

  Meta Neural Trojan Detection (MNTD) [i.30]: a meta neural analysis framework is proposed for classifying 
benign models and backdoored models. A meta classifier can be built to classify models by representing a 
model as a sequence of predictions from fine-tuned queries. This method needs to build shadow models from 
clean datasets and self-generated backdoored datasets. But the method only requires query access to the 
addressed model with zero knowledge of model parameters. 

  DeepInspect [i.31]: it detects backdoor without knowledge of model parameters and clean or training datasets. 
The method consists of three steps: model inversion to get a surrogate training dataset, trigger generation by 
conditional generative adversarial networks, and anomaly detection based on statistical hypothesis testing. 
DeepInspect detects backdoor in models with less prior knowledge at a cost of slightly lower detection rate. 

  Universal Litmus Patterns (ULPs) [i.32]: similar to MNTD, Universal Litmus Patterns fine-tunes a set of 
optimized input images for determining whether a model contains backdoors. Although ULPs cannot 
deactivate triggers or backdoors, it provides an efficient and effective backdoor detection technique against 
single trigger-based backdoor attacks. 

6 Mitigations against inference attacks 

6.1 Introduction 
Mitigations against inference attacks are summarized and analyzed in clause 6, i.e. evasion attacks, model stealing 
attacks, and data extraction attacks. 

Evasion attacks refer to those attacks where adversaries carefully manipulate input samples to evade a deployed model 
at inference time. 

EXAMPLE: For image classifiers, an attacker introduces crafted noise in a cat image such that the manipulated 
cat image is classified as a dog image by the deployed model. 

Attack techniques vary according to the knowledge level of attackers on model parameters. Attackers with full 
knowledge are stronger than attackers with zero knowledge. 

Model stealing attacks are attacks where attackers without knowledge of the addressed model try to steal model 
capabilities. There are two major attack approaches. One is to stealing model parameters by various means, such as side 
channel attacks or simply reading out model parameters from the underlying device. Another one is to generating a 
substitute model by exploiting the leaked information from a set of model input and output. In some occasions, model 
stealing attacks are about intellectual property issues. In other occasions, model stealing attacks are the first attack step 
for getting a surrogate model to launch other attacks afterwards, such as evasion attacks. 

Data extraction attacks are attacks where attackers with ability of querying the addressed model attempt to infer the 
training dataset. These attacks violate data confidentiality, and are especially harmful for sensitive data and private data, 
such as facial recognition data, medical records and financial transactions. Data extraction attacks include membership 
inference attacks and model inversion attacks. Membership inference attacks are those where given a data sample, 
attackers can distinguish whether this data sample is in the training dataset of the addressed model. In model inversion 
attacks, given a model prediction, attackers find an input sample which is predicted by the addressed model to the given 
prediction.  

Existing mitigations against evasion attacks, model stealing attacks, and data extraction attacks are summarized and 
analyzed in clauses 6.2, 6.3 and 6.4, respectively.  



 

ETSI 

ETSI GR SAI 005 V1.1.1 (2021-03)20 

6.2 Mitigating evasion attacks 

6.2.1 Overview  
Evasion attacks involve two major steps: manipulating an input and feed the manipulated input to the addressed model. 
There are various known evasion attacks finding systematic ways to craft manipulated input samples. Those carefully 
crafted samples are called adversarial examples (AE). 

Existing mitigations against evasion attacks focus on raising the bar of finding adversarial examples in development 
stage and detecting whether an input is an adversarial example in deployment stage. Some model enhancement 
mitigations and model-agnostic mitigations are shown with their approaches in Figure 4. 

Transferability is a feature of adversarial examples. Some adversarial examples crafted for one model can fool a 
different model with a high probability. They are called transferable adversarial examples. The work in [i.33] 
demonstrates the transferability of adversarial examples among several machine learning models. A later work in [i.34] 
generates adversarial examples with better transferability. 

The area of mitigations against evasion attacks has been rapidly evolving with new mitigations being proposed and 
broken at high speed. On the one hand, most mitigations empirically target very specific attack types, but are easily 
broken once the attacker can adapt to known mitigations, as has been repeatedly demonstrated [i.35], [i.36], [i.37]. Such 
mitigations, even if they can be broken by adaptive attacks, can still be sufficient for certain use cases, since adaptive 
attacks take more efforts on the part of the attacker and are hence less likely to occur in practice. On the other hand, 
some mitigations are derived from theoretic analysis and formal reasoning in a certain threat model and hence remain 
effective against a wide range of attacks, including certain adaptive attacks. However, if the threat model does not 
capture the practical constraints of attacks sufficiently well, attackers can circumvent the threat model easily, and in this 
case these mitigations can be just as vulnerable as empirical ones. It is, for instance, well-known that the perturbation 
metrics used in threat models do not reflect human perception very well. In addition, there is a trade-off between the 
robustness and invariance to perturbations a model can have, which can likewise be exploited [i.38]. 

 

Figure 4: Approaches of mitigation techniques against evasion attacks 

6.2.2 Model enhancement mitigations against evasion attacks  
Model enhancement mitigations aim at introducing hardship of finding manipulation means. Different mitigation 
approaches are presented with existing mitigation examples where known limitations are also conveyed. 
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With the focus on the training dataset, data preprocessing is one approach. Data preprocessing techniques make 
crafting adversarial examples harder at the cost of computation overhead while keeping model accuracy. Some existing 
methods are: 

  Transformation: to narrow down the attack surface of manipulating inputs, some data transformation 
techniques are applied. Adversarial perturbations are expected to be diminished through data transformation. 
For images, researchers took data compression as defense, for example, using Joint Photographic Experts 
Group (JPEG) for input data transformation [i.39]. Later on more data transformation techniques are proposed 
[i.40] as defense, including low-pass filtering, JPEG compression, principal components analysis (PCA), soft-
thresholding, patchwise PCA, low resolution wavelet approximation, against gradient-based attacks and 
concluded that JPEG compression tends to outperform others in most experimental cases. However, it has 
been [i.41] shown how to generate adversarial examples which survive JPEG compression. The compression 
defense [i.42] is advanced by combining JPEG compression and random compression level and showed that 
the new technique is effective against Carlini-Wagner's (CW) attack and DeepFool attack. Researchers [i.43] 
also studied data transformation as defense, including cropping-rescaling, bit-depth reduction, JPEG 
compression, total variance minimization, and image quilting on ImageNet and show that total variance 
minimization and image quilting are effective. 

  NULL labelling [i.44]: for classifiers, instead of denoising adversarial inputs, NULL labelling technique lets 
the addressed model learn how likely an input is adversarial by adding a NULL label to the label space. As a 
result, adversarial examples are classified as NULL with a high probability while the model accuracy remains. 

With the focus on the addressed model, one approach is model hardening. Model hardening techniques enhance 
model robustness at the cost of training overhead while keeping model accuracy remain. Model hardening techniques 
against particular attacks are in the arms race. Overtime, some of them can be defeated by adaptive attackers and hence 
have limited effectiveness. Some model hardening techniques are presented in the following with their strengths and 
limitations: 

  Adversarial training is one of the most prominent techniques explored for mitigating evasion attacks. 
Adversarial training consists in training the model on a training data set augmented with correctly labelled 
adversarial examples, thus making sure the model will not be fooled by adversarial examples. The adversarial 
examples used for training can be computed using a variety of methods for mounting evasion attacks, such as 
the fast gradient sign method (FGSM) [i.45]. Some existing work [i.46] has shown that using the projected 
gradient descent (PGD) method creates models with quite good robustness against evasion attacks, including 
adaptive attacks. This is probably due to the fact that PGD can be seen as a generalization of other attack 
methods, and can hence find the strongest adversarial examples for a given threat model with high probability. 
The comparatively good effectiveness of adversarial training using PGD compared to other defense methods is 
also confirmed by [i.47].  
Still, adversarial training only guarantees a certain level of robustness against evasion attacks, which is not 
sufficient for some applications. Adversarial training also increases the run-time for training by a certain factor 
that depends on the level of robustness provided. 

  Regularization builds on the idea that preventing small input perturbations from changing model output can 
defend against adversarial examples. In mathematical terms this translates to bounding the Lipschitz constant 
[i.48] of the function implemented by the neural network or its gradient [i.49] by adapting the training 
procedure. In fact, there is a strong relation between these two approaches, since every differentiable function 
with bounded gradient is Lipschitz continuous (although the implied constant can be large, and the function in 
question is not everywhere differentiable).  
Regularization can certifiably improve robustness, but faces several limitations [i.50]. In many cases, the 
bounds on the Lipschitz constant or gradient, respectively, are not strictly enforced, but only encouraged by 
penalty terms. If the bounds are indeed enforced, this impacts the generalization performance of the network 
and thus its overall accuracy on complex tasks. 

  Certifiable training: in the research line of robustness verification, certifiable training techniques attempt to 
train neural networks to improve the lower bound of robustness. Existing methods include designing specific 
regularizations, such as Lipschitz regularization, and randomized smoothing. Randomized smoothing 
technique [i.51] is derived from probabilistic robustness verification. For classifiers, a model is firstly trained 
by the training dataset augmented with Gaussian noises, where the output is a probability distribution over all 
classes. The final model is trained via the augmented dataset with labels indicating the class with the highest 
probability. Via randomized smoothing techniques, the derived model has probabilistic verifiable robustness. 
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  Gradient masking: to defend against gradient-based attacks, gradient masking is one approach. For example, 
shattered gradients introduce non-differentiable operations such that attackers cannot get correct gradients for 
crafting adversarial examples. Another example is stochastic gradients which introduce randomness on 
gradients. However, the results of [i.35], [i.36] pointed out that gradient masking approach can be overcame 
effectively. To recover the gradient signals from shattered gradients, backward pass differentiable 
approximation techniques are proposed to approximate gradients [i.36]. To mitigate the uncertainty of 
stochastic gradients, expectation over transformation techniques are proposed to estimate gradients [i.35]. 
Hence, gradient masking approach is much less effective against gradient-based attacks.  

  Distillation network [i.52]: it is also called defensive distillation. Distillation network is proposed as robust 
training technique for classifiers against adversarial examples. To train the distilled network, a teacher model 
is firstly trained on a training dataset. The distilled network is then trained on the same input and the 
corresponding output probabilities of the teacher network. The output probabilities are also called soft labels 
while the original labels of the training dataset are hard labels. Distillation network has been shown less 
effective against adaptive attackers [i.53]. 

In addition to model hardening techniques, evaluating model robustness is an essential primitive to quantify how 
robust a model is. Evaluation itself does not modify the addressed model. Coupling robustness evaluation and model 
hardening enables a loop of model robustness enhancement. Here are some existing methods of evaluating model 
robustness: 

  Adversarial testing is closely related to adversarial training described earlier. Adversarial testing consists of 
testing the robustness of a trained model with respect to adversarial examples. These attacks can be created 
using a variety of methods, in particular projected gradient descent. Adversarial testing allows quantifying the 
robustness of a model to the considered attacks. If the testing results show that the robustness of the model is 
low, the model can be hardened more thoroughly, using adversarial training. 

  Model verification for certifiable robustness: Certifiable robustness is a conceptual theoretic description 
capturing model robustness against evasion attacks. An adversarial example is a crafted input close enough to 
an intact input where they are somewhat indistinguishable to human, yet the addressed model gives them 
different output. Figure 5 gives a conceptual illustration, where x is an input, x' is an adversarial example, y 
and y' are model output for x and x' respectively. The distance between x and x' is evaluated by certain metrics, 
such as Lp distance. The addressed model is the function mapping input space to output space. Certifiable 
robustness attempts to certify a lower bound of the perturbation range  where no adversarial example exists. 
Existing examples include certifiable robustness for CNN [i.54], RNN [i.55] and GNN [i.56]. 

 

Figure 5: Adversarial examples and certifiable robustness 
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Model verification methods can be used to verify model robustness against certain attacks, such as Lp attacks where 
adversarial perturbations are limited within a range defined by Lp norm. Deterministic verification approaches are 
guaranteed to identify non-robustness when the given input is non-robust against the pre-described attacks. Probabilistic 
verification approaches identify non-robustness with certain probability. The verification method is called complete if 
the verification method claiming non-robustness imply that the addressed model is non-robust. Otherwise, the 
verification method is incomplete: 

  For deterministic complete verification methods, Satisfiability (SAT) solvers are one example. Given neural 
network constraints and property constrains, SAT solver either output a counter-example or imply the absence 
of counter-example. Satisfiability Modulo Theories (SMT), which is a variant of SAT, can verify robustness of 
deep neural networks when property constraints represent model robustness [i.57], [i.58]. However, SAT-
based verification can only verify small-size neural networks. Scalability is still an active research area of 
model verification. 

  For deterministic incomplete verification methods, linear programming based verification is an example. 
Linear programming-based verification technique represents neural network constraints as linear constraints 
and property constraints as objective functions, where constraints are all linear. Then linear programming 
solvers either find a counter-example or imply the absence of counter-example. Again, linear programming 
solvers serve as robustness verification when the objective is to determine the smallest noise that satisfies 
linear constraints of the network but results in misclassification [i.59], [i.60]. When the addressed model is 
ReLU-based, ReLU is represented as two linear functions with the cost of larger problem size [i.61]. When the 
addressed model has non-linear activations, abstraction interpretation techniques [i.62], such as linear 
approximation [i.61], [i.63], can be applied such that linear programming based verification can still work. It 
gains scalability. Via abstraction interpretation techniques, robustness of deep neural networks with practical 
sizes can be verifiable by incomplete verification. Abstraction refinement techniques [i.64] are proposed to 
incrementally refine the model abstraction to get a tighter verification result. Some reference tools for 
SMT-solvers [i.65] and abstraction interpretation based verification [i.66] are available. 

  Existing probabilistic robustness verification methods are incomplete, yet they are scalable and efficient. 
PROVEN [i.67] is one example which provides probability certificates of neural network robustness. For some 
more information of robustness verification, here are some recommended references [i.68]. 

6.2.3 Model-agnostic mitigations against evasion attacks  
Model-agnostic mitigations aim at detecting adversarial examples, restoring input samples or restoring model output.  

With the focus on inference data samples, adversarial example detection and input restoration are two approaches. 
Adversarial example detections investigate input samples and tell if they are manipulated. Here are some existing 
methods: 

  Input transformation: for image classifiers, image transformations, such as rotation and shifting, are proposed 
to detect adversarial examples by constructing a detector from the training dataset with image transformations 
[i.69]. Experimental results show the effectiveness by the detection rate on MNIST and CIFAR-10 against 
FGSM and CW evasion attacks. Another example of image transformation is feature squeezing [i.70], such as 
reducing the color bit depth of each pixel and spatial smoothing. One more example is adding random 
perturbation. An adversarial example is close to an input within a certain bounded range, but the addressed 
model gives different outputs. When a given input is indeed an adversarial example, adding some perturbation 
on the given input can push the output back to the original class with a non-negligible probability. Based on 
this rationale, researchers [i.71] proposed adding random perturbations on input and analysing the resulting 
output to detect adversarial examples. Their experimental results show the effectiveness on MNIST, CIFAR-
10 and ImageNet against BIM, DeepFool and CW evasion attacks at the cost of generating a detector from the 
original training dataset. 

  Statistics: to detect adversarial examples, some research seek for proper statistics. For example, for 
convolution neural networks, binary classifiers are constructed from the statistics of convolutional layer results 
from normal training dataset and adversarial examples [i.72]. Experimental results show the effectiveness on 
ILSVRC2012 (ImageNet-based) dataset with AlexNet and VGGNet network architectures against L-BFGS 
attacks at the cost of constructing a binary classifier. This method needs knowledge of training dataset. 
Another example of statistics method uses the expected perturbed log-odds over random perturbations to test if 
a given input x classified as class y is manipulated while the true class is z [i.73]. This method needs to access 
the results before the final layer at runtime. Experimental results show the effectiveness on CIFAR-10 and 
ImageNet against PGD attacks at the runtime cost of operating multiple inference for one input. 
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Input restoration techniques process input samples in order to reverse adversarial manipulation while preserving 
essential input features. Here are some existing methods: 

  MagNet [i.74] is a framework of adversarial example detection and recovery. It integrates a set of detectors 
and a reformer. When an adversarial example has significant perturbation from the benign example, it can be 
detected by detectors. When the perturbation is less significant such that it cannot be detected by detectors, the 
reformer can restore the adversarial example to the benign example. One reformer example is to use 
autoencoder, which is an unsupervised learning algorithm. The autoencoder is trained by the training dataset 
without labels such that the output of autoencoder is close to the input. Using autoencoder as the reformer in 
MagNet does not change benign examples much but push adversarial examples to benign examples. Yet 
MagNet is less effective against the CW attacks [i.75] and has considerable computing overhead. 

  Quantization methods [i.76] are proposed to diminish adversarial perturbations from input at inference time. 
The challenge is to find a proper quantization level such that perturbations are diminished while model 
accuracy remains. Trainable quantization method finds the suitable quantization level during training phase 
and applies it during inference phase. Experimental results show the effectiveness on MNIST and CIFAR-10 
against FGSM, CW and JSMA attacks. 

With the focus on the addressed model, output restoration is one approach. Ensemble techniques are one existing 
method to restore the model prediction:  

  Ensemble: for classifiers, ensemble methods are proposed to mitigate adversarial perturbations. The 
assumption is that some adversarial examples misleading one classifier do not mislead other classifiers. 
Ensemble methods construct a set of classifiers to classify a new data input by a combination of their 
predictions. Researchers [i.77] proposed four ensemble constructions for model robustness, including random 
initial model parameters, similar but different network architectures, bagging, and adding Gaussian noise on 
training dataset. Their experimental results on MNIST and CIFAR-10 show that ensemble methods are 
effective against FGSM and BIM attacks. Another ensemble construction [i.78] is proposed by using different 
loss functions in the set of classifiers. Experimental results show that the ensemble method has better 
robustness against FGSM-based attacks at the cost of model accuracy on clean dataset. Some adversarial 
examples [i.33] can transfer among models, which are thus immune to ensemble methods. 

6.3 Mitigating model stealing 

6.3.1 Overview 
There are two different types of model stealing attacks. The first one is to directly obtain model parameters by 
vulnerability of the system where the addressed model is located. Possible attack approaches include applying side 
channel attacks to extract model parameters and directly accessing model parameters in the memory of the deployed 
device. Another type of model stealing attack is to generate a substitute model with approximated capability by crafted 
queries to the victim model and corresponding model predictions. 

Existing mitigations against model stealing attacks focus on securing model hyperparameters and parameters, detecting 
abnormal queries to the model in operation, obfuscating the inference output, and Intellectual Property (IP) 
management.  

Protecting model hyperparameters and parameters against stealing is a traditional data confidentiality requirement. It 
can be achieved by adapting conventional data confidentiality techniques. Deploying secure hardware is one approach 
against side channel attacks and unauthorized memory access. Another approach against side channel attack is 
obfuscating side channel information [i.86]. Another approach against unauthorized access is applying cryptographic 
encryption schemes, that is, keeping model parameters in the encrypted form. 

Existing mitigations against model stealing attacks via substitute models are summarized in Figure 6. 
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Figure 6: Approaches of mitigation techniques against model stealing attacks 

6.3.2 Model enhancement mitigations against model stealing  
Model enhancement mitigations against model stealing attacks have one approach consisting in intellectual property 
(IP) protection. To declare the ownership of the addressed model in case the model is extracted without authorization, 
special patterns or functionality can be embedded into the addressed model in the development stage:  

  Watermarking [i.79]: to protect the copyright of DNN models, the technique embeds watermarks in the 
training dataset that enable to verify the ownership of deployed DNN services. The method creates the 
watermarks in the training dataset, then assigns pre-defined labels to the different watermarks, and finally 
trains the watermarks with pre-defined labels to DNNs. The DNNs automatically learn and memorize the 
patterns of embedded watermarks and pre-defined labels. By doing this, the protected model will produce the 
pre-defined prediction upon watermarked queries, and so will models obtained by the first type of model 
stealing attack. The watermarking technique turns backdoor attacks into a mitigation. In order to detect this 
model stealing attack, the detection method only requires normal usage of the suspicious model with zero 
knowledge of model parameters, i.e. only requires access to its API. The technique is usually applied over 
image data.  

Different watermark types can be used, for example: 

  Meaningful content embedded in original training data: Meaningful content such as images of text strings is 
added as watermarks to some of the images of the training dataset, so as direct reverse engineering to detect 
such watermarks is difficult. At ownership dispute, a watermarked query will be feed to the model of 
suspicion, and whether the model outputs the pre-defined label will be used as proof for verification. 

  Independent training data with unrelated classes: Images from other classes which are irrelevant to the task of 
the protected DNN model are added as watermarks. In this way, while the embedded watermarks do not 
impact the original function of the model, the capability of recognizing the unrelated data is part of the 
functionality of the addressed model, which serves to verify the model ownership. 

  Pre-specified noise: Specifically crafted noise can also be used as watermarks. The target model is trained to 
either memorize the specific noise created for watermarking or to generalize the noise so any noise that 
follows the same distribution of the pre-specified noise can be recognized. 

Researchers have proved that watermarking is not always efficient to protect model IP [i.80] and watermarking does not 
prevent the model being extracted, which can go unnoticed if the adversary keeps the substitute model private [i.81]. 
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6.3.3 Model-agnostic mitigations against model stealing  
In addition to protecting model hyperparameters mentioned above, a generic model-agnostic mitigation is to limit the 
number of queries one can make with in a time period. Other existing model-agnostic mitigations against model 
stealing attacks majorly detect suspicious queries to the addressed model and then take different countermeasures, 
such as warning and output obfuscation. Here are some existing examples for reference: 

  Extraction warning [i.82]: a cloud-based extraction monitor to inform model owners about the status of model 
extraction by both individual and colluding adversaries using a decision tree. The monitor observes the query 
response pairs of each adversary to the deployed decision tree model, and incrementally learns a local decision 
tree based on these tuples. The detection can be done at fixed time intervals or after the deployed model has 
answered certain number of queries. Two novel metrics are proposed to measure the model learning rate of 
adversaries. A first metric is based on entropy and measures the information gain of a decision tree with 
respect to a validation set provided by the model owner. The second metric is based on maintaining a compact 
model summary corresponding to each adversary with increasing number of queries. The compact model 
summary represents the boundaries of regions within the feature space that the adversary may have learnt for 
each class. The monitor assesses the coverage of summaries within their respective classes to compute the 
overall learning rate of an adversary. The objective is to detect if adversaries can, either individually or jointly, 
reconstruct a model that yields an accuracy beyond a given threshold from the queries obtained from the 
addressed model. 

  Boundary differential privacy ( -BDP) [i.83]: this method protects against model extraction attacks that use 
fine-tuned queries with differential property to infer the decision boundary of the addressed model. The 
proposed solution is to obfuscate the prediction responses near the decision boundary. Based on a perturbation 
algorithm called boundary randomized response, the  -BDP method prevents adversaries from learning the 
decision boundary by a predefined precision regardless the amount of queries issued to the model prediction 
API. The technique is effective for both linear and non-linear models. 

  Extraction query distribution identification [i.84]: Protecting Against DNN Model Stealing Attacks (PRADA) 
proposed a method that detects suspicious queries to the addressed DNN model by analysing the distribution 
of consecutive API queries and identifying whether the distribution deviates from benign behaviour, i.e. from a 
normal (Gaussian) distribution. PRADA collects stateful information of queries in addressed model prediction 
APIs and can detect all prior model extraction attacks with no false positives. This defense does not require 
any knowledge about the addressed model, nor about the training dataset, and it is agnostic to the distribution 
of the sample dataset used in the queries. However, the method can be circumvented by mimicking benign 
query distributions.  

  Rounding confidences [i.85]: with the aim to limit the information provided by model query APIs, this 
technique proposes to round confidence scores of the target model to some fixed precision. For decision trees, 
rounding confidence scores increase the chance of node identifier collisions and thus reduces attacker's success 
rate. The defense has also shown its effectiveness against extraction attacks in decision trees, but not in some 
other models. 

  Ensemble [i.85]: ensemble methods such as aggregation of predictions by a number of individual models, can 
be used to defend against model reverse engineering attack. In this research paper, the author found that 
ensemble methods' resilience to extraction attacks is higher, since attackers will only be able to obtain 
relatively coarse approximations of the target function.  

Another mitigation approach is to prove the model ownership via fingerprinting when there is a suspicious model: 

  Fingerprinting based on conferrable adversarial examples [i.87]: this defense addresses DNN-based classifiers 
and it extracts a set of inputs from the source model so that only surrogate models agree with the source model 
on the classification of such inputs, whereas (benign) reference models relative to the source model do not. 
These inputs called conferrable adversarial examples are a subclass of transferable adversarial examples that 
exclusively transfer with a target label from a source model to its surrogates. While this fingerprinting scheme 
is robust to almost all derivation and extraction attacks, strong adaptive attacks can still remove the fingerprint. 
To implement this protection, the defender has the full knowledge of the source model parameters, query 
access to the target model deployed by the attacker and a limited number of queries to verify whether the 
target model is a surrogate. 
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  Fingerprinting the classification boundary [i.88]: this technique uses gradient descent method to find 
fingerprinting data points near the classification boundary of the addressed DNN-based classifier. These data 
points together with their predicted labels are used as the fingerprint for the addressed classifier. The model 
owner can identify that a suspect classifier is potentially pirated from the addressed model by querying its 
prediction API to get the labels of the fingerprinting data points. If most of the suspect classifier's predictions 
match those of the fingerprint for the owner's model, then the IP is compromised with a high probability. 
Authors claim that unlike watermarking, the technique does not incur in any accuracy loss for the addressed 
classifier, since it does not tamper its training or fine-tuning process at all. 

6.4 Mitigating data extraction

6.4.1 Overview  
Data extraction attacks include two different types of attacks, model inversion attacks and membership inference 
attacks. Model inversion attacks on deep neural networks attempt to find a potential model input given a model output 
and model querying permissions. Membership inference attacks attempt to distinguish whether a data sample is in the 
training dataset or not given model querying permissions. Attack approaches are extracting leaked information from a 
collection of model input and output pairs and corresponding confidence levels of model output. 

Existing mitigations against data extraction attacks focus on embedding data privacy, training with privacy and limiting 
leaked information. They are summarized in Figure 7. 

 

Figure 7: Approaches of mitigation techniques against data extraction attacks 

6.4.2 Model enhancement mitigations against data extraction 
To provide data privacy, two model enhancement approaches are to control the information provided by the training 
dataset for the training process and to train the addressed model with privacy guarantees. 
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With the focus on data, embedding privacy for training dataset is one approach. Here are some examples: 

  Private Aggregation of Teacher Ensembles (PATE) [i.89] combines multiple models trained with disjoined 
datasets. These models are used as teachers for a student model, which learns to make prediction. The 
prediction is chosen by noisy voting among all of the teachers. These teacher models are not published and 
thus inaccessible except to the student model. PATE provides differential privacy for training data independent 
of the learning algorithm. Despite the provable robustness against membership inference attacks, PATE is hard 
to achieve with negligible utility loss. 

  Adversarial learning with privacy: to provide data privacy, one approach is to train a data representation from 
the original training dataset for the model training at a later time. The trained data representation reveals less 
sensitive information of training data set while keeping model accuracy as much as possible. One example 
[i.90] is addressing medical records in text format. Medical records are converted to another representation 
with less identity information. The process is also called de-identification. The de-identification process is 
composed by three training stages, including training an initial representation, training a potential adversary, 
retraining the representation against such adversary. By using de-identified data representation, given two data 
representations, an adversary cannot distinguish if they are converted from the same input data. Another 
example [i.91] is addressing facial images. The representation generation of training data set is trained with 
two objectives of optimizing model accuracy and maximizing adversarial reconstruction loss. The adversarial 
reconstruction loss is defined by predictions of a discriminator and a perceptual distance. Hence, the obtained 
data representation of the training dataset reveals less information while keeping model accuracy. 

With the focus on the addressed model, training with privacy is one approach. Here are some examples. 

  DP-SGD [i.93]: differential privacy [i.92] is a framework for quantitatively measuring the privacy guarantees 
provided by an algorithm. The basic idea is to add randomness to algorithm's behaviours. Learning with 
differential privacy provides provable privacy guarantees and mitigating the risks of exposing sensitive 
information about training data. For a model trained with differential privacy, the behaviours of the trained 
model is less affected by any single training data. Hence, it is difficult to tell which data record belongs to the 
training dataset by observing the model's behaviour. By using the framework of differential privacy, 
Differentially Private Stochastic Gradient Descent (DP-SGD) technique is proposed to train a model with 
provable membership privacy. DP-SGD adds noises to the gradients used in Stochastic Gradient Descent 
(SGD), which is the core of almost all deep learning algorithms. The parameters of the trained model are 
iteratively updated using random noises and gradients. The privacy comes from the added noises. However, 
DP-SGD imposes a significant classification accuracy loss for protecting large models on high dimensional 
data. 

  Adversarial regularization [i.94] mitigates membership inference attacks through adversarial training. The 
model's predictions on the members of its training dataset are indistinguishable from its predictions on the non-
members of its training dataset from the same distribution. This requirement is captured as a min-max game 
optimization problem. The adversarial training algorithm is designed to train a model that minimizes both the 
prediction error and the maximum gain of the membership inference attack against it. 

6.4.3 Model-agnostic mitigations against data extraction 
To provide data privacy, one model-agnostic approach is to reveal less information from model prediction and to 
restrict the number of queries that can be made to the model. In some occasions, model prediction not only provides 
the final result but also other information, such as confidence scores for all possible predictions. Obfuscating 
confidence scores can reduce revealed information. Some examples are here: 

  MemGuard [i.95] add noises to confidence scores to mitigate membership inference attacks. Assume attackers 
use a classifier to distinguish whether an input is in the training dataset. MemGuard crafts noises such that the 
manipulated confidence scores become adversarial examples to attacker's classifier. As a result, the attacker 
cannot successfully launch membership inference attack. 
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  Prediction purification [i.96] purifies the confidence score vectors predicted by the target classifier by reducing 
their dispersion. As a result, attackers get less information from purified confidence score vectors. . Prediction 
purifications can be built to mitigate only membership inference attack, only model inversion attack and both 
attacks. Moreover, from experimental results, prediction purification against membership inference attack is 
effective against model inversion attack and vice versa. The generation of purifiers needs a subset of training 
dataset. The generated purifier is composed with the addressed classifier model to purify the confidence score 
vectors. Experimental results show prediction purification can reduce the membership inference accuracy and 
increase the model inversion error at the cost of little classification accuracy drop and little distortion to the 
confidence scores. 

7 Conclusion 
The present document summarizes existing and potential mitigation approaches against poisoning attacks, backdoor 
attacks, evasion attacks, model stealing attacks, and data extraction attacks for AI-based systems. Mitigation approaches 
are firstly summarized as model enhancement and model-agnostic, and then grouped by their rationales. Due to the 
rapid evolvement of attack technology for AI-based systems, existing mitigations can become less effective over time 
yet mitigation approaches and their rationales remain. In addition, most of the approaches presented stem from an 
academic setting and make certain assumptions which need to be taken into account when these approaches are applied 
in practice. The present document intends to serve as a securing AI technical survey reference for the planning, design, 
development, deployment, operation and maintenance of AI-based systems. 
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