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Intellectual Property Rights 

Essential patents  

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information 
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found 
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in 
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web 
server (https://ipr.etsi.org/). 

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee 
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web 
server) which are, or may be, or may become, essential to the present document. 

Trademarks 

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. 
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no 
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does 
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks. 

Foreword 
This Technical Report (TR) has been produced by ETSI Technical Committee Smart Machine-to-Machine 
communications (SmartM2M). 

Modal verbs terminology 
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be 
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions). 

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation. 

Introduction 
In addition to interoperability and security that are two recognized key enablers to the development of large IoT 
systems, a new one is emerging as another key condition of success: virtualization. The deployment of IoT systems will 
occur not just within closed and secure administrative domains but also over architectures that support the dynamic 
usage of resources that are provided by virtualization techniques over cloud back-ends.  

This new challenge for IoT requires that the elements of an IoT system can work in a fully interoperable, secure and 
dynamically configurable manner with other elements (devices, gateways, storage, etc.) that are deployed in different 
operational and contractual conditions. To this extent, the current architectures of IoT will have to be aligned with those 
that support the deployment of cloud-based systems (private, public, etc.).  

Moreover, these architectures will have to support very diverse and often stringent non-functional requirements such as 
scalability, reliability, fault tolerance, massive data, security. This will require very flexible architectures for the 
elements (e.g. the application servers) that will support the virtualized IoT services, as well as very efficient and highly 
modular implementations that will make a massive usage of Open Source components. 

These architectures and these implementations form a new approach to IoT systems and the solutions that the present 
document investigates also should be validated: to this extent, a Proof-of-Concept implementation involving a massive 
number of virtualized elements has been made. 

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx
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The present document is one of three Technical Reports addressing this issue: 

• ETSI TR 103 527 (the present document): "Virtualized IoT Architectures with Cloud Back-ends" (the present 
document); 

• ETSI TR 103 528 [i.1]: "Landscape for open source and standards for cloud native software for a Virtualized 
IoT service layer"; 

• ETSI TR 103 529 [i.2]: "Virtualized IoT over Cloud back-ends: A Proof of Concept". 
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1 Scope 
The present document: 

• makes a description of some use cases that benefit from virtualization and outlines which one will be used for 
the Proof-of-Concept that is described in depth in ETSI TR 103 529 [i.2]; 

• addresses the rationale and requirements for the use of virtualization - and of the cloud in general - in support 
of IoT systems. It also introduces some features that will be key for the definition and further implementation 
of virtualized IoT systems such as microservices; 

• provides the identification of new architectural elements (components, mappings, Application Programming 
Interfaces (API), etc.) that are required to address IoT on a cloud back-end. In particular, one objective of the 
present document is to describe how current IoT nodes e.g. the oneM2M CSE, can be modified and improved 
by the introduction of micro-services. 

2 References 

2.1 Normative references 
Normative references are not applicable in the present document. 

2.2 Informative references 
References are either specific (identified by date of publication and/or edition number or version number) or non-
specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long-term validity. 

The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 

[i.1] ETSI TR 103 528: "SmartM2M; Landscape for open source and standards for cloud native 
software applicable for a Virtualized IoT service layer", 2018. 

[i.2] ETSI TR 103 529: "SmartM2M; IoT over Cloud back-ends: a Proof of Concept", 2018. 

[i.3] ITU-T News: "What is 'cloud-native IoT' and why does it matter?", October 2017. 

NOTE:  Available at http://news.itu.int/what-is-cloud-native-iot-why-does-it-matter/. 

[i.4] Amazon Web Services: "What is Auto-scaling". 

NOTE:  Available at http://docs.aws.amazon.com/autoscaling/latest/userguide/WhatIsAutoScaling.html. 

[i.5] Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the 
protection of natural persons with regard to the processing of personal data and on the free 
movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation). 

NOTE:  Available at https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32016R0679. 

[i.6] Deloitte: "Data Privacy in the cloud", 2016. 

NOTE:  Available at https://www2.deloitte.com/content/dam/Deloitte/ca/Documents/risk/ca-en-risk-privacy-in-
the-cloud-pov.PDF. 

[i.7] ETSI TS 118 101 (V2.10.0): "oneM2M; Functional Architecture (oneM2M TS-0001 
version 2.10.0 Release 2)". 

http://news.itu.int/what-is-cloud-native-iot-why-does-it-matter/
http://docs.aws.amazon.com/autoscaling/latest/userguide/WhatIsAutoScaling.html
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32016R0679
https://www2.deloitte.com/content/dam/Deloitte/ca/Documents/risk/ca-en-risk-privacy-in-the-cloud-pov.PDF
https://www2.deloitte.com/content/dam/Deloitte/ca/Documents/risk/ca-en-risk-privacy-in-the-cloud-pov.PDF
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[i.8] Recommendation ITU-T Y.3600: "Big data - Cloud computing-based requirements and 
capabilities", 2015. 

[i.9] ETSI GS NFV 002: "Network Functions Virtualisation (NFV); Architectural Framework". 

[i.10] ETSI GS NFV-INF 001: "Network Functions Virtualisation (NFV); Infrastructure Overview". 

3 Definitions and abbreviations 

3.1 Definitions 
For the purposes of the present document, the following terms and definitions apply: 

Open Source Software (OSS): computer software that is available in source code form 

NOTE:  The source code and certain other rights normally reserved for copyright holders are provided under an 
open-source license that permits users to study, change, improve and at times also to distribute the 
software. 

source code: any collection of computer instructions written using some human-readable computer language, usually as 
text 

standard: output from an SSO 

Standards Setting Organization (SSO): any entity whose primary activities are developing, coordinating, 
promulgating, revising, amending, reissuing, interpreting or otherwise maintaining standards that address the interests 
of a wide base of users outside the standards development organization 

NOTE:  In the present document, SSO is used equally for both Standards Setting Organization or Standards 
Developing Organization (SDO). 

3.2 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

AE Application Entity (in oneM2M) 
AMQP Advanced Message Queuing Protocol 
API Application Programming Interface 
ARM Acorn RISC Machine architecture 
BCP Best Common Practices 
CAPEX Capital Expenditure 
CEP Complex Event Processing 
CoAP Constrained Application Protocol 
CPU Central Processing Unit 
CSC Cloud Service Customer 
CSE Common Services Entity (in oneM2M) 
CSF Common Service Function 
CSP Cloud Service Provider 
DDoS Distributed Denial of Service 
EU European Union 
GDPR Global Data Protection Regulation 
HLA High Level Architecture 
HTTP HyperText Transfer Protocol 
IaaS Infrastructure as a Service 
IAM Identity and Access Management 
ICT Information and Communication Technology 
IoT Internet of Things 
IP Internet Protocol 
IPC Inter-Process Communication 
IPE Interworking Proxy Entity (in oneM2M) 

http://itlaw.wikia.com/wiki/User
http://itlaw.wikia.com/wiki/Standards
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ISG Industry Specification Group 
IT Information Technology 
MANO MANagement and Organization (in NFV) 
MQTT Message Queuing Telemetry Transport 
NFV Network Function Virtualisation 
NFVI NFV Infrastructure 
ONAP Open Network Automation Platform 
OSM Open Source Mano (in ETSI) 
OSS Open Source Software 
PaaS Platform as a Service 
PoC Proof-of-Concept 
PoP Point of Presence 
SaaS  Software as a Service 
SDO Standards Development Organization 
SE Service Entity (in oneM2M) 
SPOF Single Point Of Failure 
SSO Standards Setting Organization 
UC Use Case 
URI Uniform Resource Identifier 
VM Virtual Machine 
VNF Virtualized Network Function 

4 Rationale for IoT Virtualization 

4.1 IoT: towards massive deployments 
The focus of IoT in the recent years has been on connecting devices and applications. To this extent, a number of 
standards, frameworks, solutions have been developed. Now that the maturation of the industry is progressing rapidly, 
IoT is facing to major challenges.  

On the one hand, connected devices as well as applications have to be integrated with existing, evolving or entirely new 
business processes: this creates the need for very adaptive frameworks that offer the possibility to easily introduce new 
applications and to ensure that they are properly connected to the existing enterprise systems, and to process enormous 
quantity of data. 

One the other hand, IoT systems are transitioning from proof-of-concept deployments or new projects with limited size 
and scope towards full-fledge systems. These new systems may require extremely high numbers of connected devices 
(thus generating needs for scalability or deployment automation) as well as stringent non-functional requirements (such 
as low latency). 

In both cases, new IoT systems will require a high degree of availability, adaptability and flexibility. In particular, the 
resources used by those systems may have to be very dynamic, both in terms of configuration and run-time flexibility. 
The models provided by Cloud Computing, which have been designed upfront with these two requirements in mind, 
seem very attractive in this context. 

4.2 Cloud Computing and Virtualization 
Cloud computing is allowing the provision of very sophisticated capabilities; for computing, storage, analytics, etc.; to 
very dynamic and potentially massive number of users. Those capabilities are provided as services  
(Platform-as-a-Service, Infrastructure-as-a-Service; Software-as-a-Service; etc.) that provides functional and also non-
functional support (e.g. low latency fault-tolerance, horizontal scalability, cost-optimization, or geo-optimization 
together with Service Level Agreements (SLAs), and security. 

The technical capabilities of cloud computing technology made it possible to provide the most demanding information 
and communication technology (ICT) infrastructures, such as communication networks, from specialized hardware and 
software to new software paradigms, referred to as 'cloud-native'.  
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Figure 1: Options for adoption of Cloud Native solutions 

The expectation of Cloud-Native applications is to benefit from offerings from Cloud Service Providers (CSP) that may 
cover parts or all of the layers of Virtualized application, via Infrastructure as a Service (IaaS), Platform as a Service 
(PaaS) or Software as a Service (SaaS). Figure 1 presents the possible usages of such offerings in delegating more and 
more important parts of the underlying layers to a third-party in charge of hiding complexity, resource usage, etc. 

4.3 The new challenge: combining IoT and Cloud Computing 
The IoT industry starts to understand the potential benefits of combining the strengths of both IoT and Cloud industries 
in a new value proposition (see [i.3] for example). IoT virtualization - i.e. IoT built on cloud-native principles - is to IoT 
platforms as what Network Function Virtualisation (NFV) is to communication networks. 

When applied to IoT, virtualization is expected to provide technical benefits such as more flexibility on assigning IoT 
virtualized objects and functions to physical resources. Moreover, virtualization should bring as well financial benefits 
(e.g. greater CAPEX efficiency) or operational benefits (e.g. improvement of automation and operating procedures) 
altogether resulting in boosted service innovation. 

The scope of IoT standards and protocols has so far focused on interface specifications and related data models. 
Developing IoT platforms that use cloud-native principles will benefit from guidelines and Best Common Practices 
(BCP) in building operational grade IT applications using cloud technologies. 

The convergence of cloud and IoT is of major important to those (e.g. architects) aiming at building IoT solutions that 
can dynamically reach massive scale in support of large IoT deployments, e.g. in Smart Cities. It is of great importance 
for technical actors of IoT to benefit from guidelines for IoT virtualization, in particular regarding the 'containerisation' 
of IoT applications. 

4.4 Content of the report 
Clause 5 provides a number of Use Cases (UC) that could benefit from virtualization of IoT. Each UC is described from 
a functional standpoint, together with the expectations towards virtualization. Finally, one UC is highlighted since it is 
the one that will be selected for implementation (as it is described in ETSI TR 103 529 [i.2]). 

Clause 6 of the present document presents the Cloud Computing features that are relevant in the context of IoT 
Virtualization. First, some functional requirements are introduced that correspond to specific functionalities that are 
(better) supported by Virtualization. Similarly, some non-functional requirements are presented that are expected to be 
specially supported through Virtualization. Finally, two key features that will play a key role in architectures and 
implementations: microservices and inter-process communications. 

Clause 7 investigates the main dimensions that will be addressed in order to define layered architectures supported by 
microservices. A reference model for such an architecture is introduced that also serves as a basis for the description of 
the "Landscape of Open Source and Standards" that is developed in ETSI TR 103 528 [i.1]. 
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Clause 8 summarizes the main finding of the present document and provides a set of recommendations for architects 
and developers in charge of potential IoT virtualization projects. 

Annex A is addressing the relationship of IoT with Big Data and, in particular, regarding the question of Data Quality 
and some potential solutions. 

5 Some use cases for IoT Virtualization 

5.1 Introduction 
This clause introduces a (limited) number of generic Use Cases (UCs) that are illustrative of the expected benefits and 
potential challenges of IoT virtualization. There is probably a large number of Use Cases for which a "traditional"  
(i.e. non-virtualized) approach can and will apply. However, the introduction of IoT Virtualization is expected to make 
some UCs more effective: it would generally improve the efficiency of their implementation or support interoperability 
at a more fine-grained level (or both). 

For the presentation of UCs, rather than present them based on the needs of a given business domain (aka a "vertical"), 
the approach taken is to present the major features outlined by a class of applications in different "verticals". The name 
of the UC will refer to the major underlying feature involved (e.g. fault-tolerance, data privacy, etc.). 

5.2 Horizontal up and down Auto-Scaling 
The amount and type of data transmitted by IoT devices may vary drastically in time depending on some events that can 
be internal or external to the virtualized IoT system (e.g. road traffic increase during holiday departure).  

A cloud-native IoT platform shall be able to continuously monitor its resources, scale-up its capabilities when needed, 
then scale-down to an optimized state to avoid wasting resources. This capability is referred to as "Auto-Scaling" (see 
[i.4] for example). 

The main objective of Auto Scaling is to ensure that the number of Virtual Machine (VM) instances available for and 
used by the virtualized application are optimal at a given time. Practically, a minimum number of VM instances is 
defined (lower threshold for the auto-scaling down) as well as a maximum number (upper threshold for the auto-scaling 
up). When needed, additional VMs are added (with an increment that can be predefined), used as long as needed and 
released when the usage is no longer needed. 

This UC can be illustrated by a number of examples taken from various verticals: 

• Intelligent Transport Systems with a sudden increase in traffic (e.g. vacations). 

• Electrical (Smart) Grids with burst reconnection of IoT devices after a power cut. 

• Smart Metering with burst transmission of intelligent meters data at given time slots. 

• And many more, etc. 

The benefits of Auto Scaling are largely related to the non-functional support it provides to the virtualized applications: 

• Improved availability: the virtualized application has, at any time, the best adjusted capacity to deal with the 
most complex and hard to predict traffic patterns.  

• Improved fault tolerance: when an instance (or a group of) VM(s) does not function properly, Auto-Scaling 
allows to quickly terminate it and launch an adequate replacement.  

• More effective cost management: thanks to the dynamic increase and decrease of the needed capacity, the 
usage is constantly adjusted to reduce the consumption, hence the cost, of the computing resources. 
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5.3 No single point of failure 
Like every other ICT systems, IoT systems can be built with one or more Single Point(s) Of Failure (SPOF). A SPOF is 
the results of a flaw in the design, implementation or configuration of the system. It introduces a potentially very high 
risk since one fault or malfunction may cause the entire system to stop operating. As an example, IoT servers and 
gateways can be a SPOF in an IoT system: in a poorly designed architecture, when a server or a gateway goes down, 
critical functions may stop.  

Preventing that catastrophic outcome is possible, as long as the architects and designers can identify the SPOFs that 
appear in the system's design and implement corrective measures - as long as this is both feasible and cost-effective. 
The techniques that make this possible are largely based on clustering and replication. In principle, such techniques are 
supported by a cloud-native IoT architecture and supported by the major cloud infrastructure providers. 

Consequently, the possibility of providing this kind of support will be a major support for a large number of Use Cases 
in a very large array of vertical domains. Some examples of such verticals and related UCs and related are shown 
below: 

• Health Care: remote patient examination, monitoring and surgery. 

• Emergency Services: allowing Emergency Management Teams to access patient records while on the road. 

• Railway systems: improved signalling with reliable communications and better integration with system. 

• And many more, etc. 

Cloud Computing is often seen as a way to avoid the single points of failure with built-in redundancy or clustering 
services. It is important to note that Auto-Scaling is adding to the effectiveness of redundancy (by allowing to quickly 
terminate malfunctioning VMs and launch an adequate replacement, as noted above) and is an important element in the 
process of fixing the SPOFs in the cloud. 

However, IoT Virtualization is not an absolute panacea, in the sense that there are still SPOFs that may be associated to 
the use of Cloud Computing resources. An example of such SPOF is a centralized (and not replicated) monitoring 
function that may be compromised in case of malicious attack (e.g. DDoS). Similarly, the possibility of the failure of 
one cloud provider is another example of SPOF. So, architects and developers of Virtualized IoT systems will still have 
to ensure that all SPOFs are identified and corrected, but it is expected that their number will be lower than in 
"traditional" (non-virtualized) IoT systems. 

5.4 Data privacy 
Potentially, a wide range of IoT applications are impacted by data privacy and the need for Data Protection. The amount 
of data that IoT devices can generate is enormous (with billions of data points created every day) and is leaving a lot of 
this information vulnerable and susceptible to malicious usage (by hackers in the extreme case, but also by unauthorized 
competitors). 

IoT virtualization is also impacted by the question of data privacy. For instance, when a Cloud Service Provider (CSP) 
is used, it is important to ensure that the data belonging to the Cloud Service Customer (CSC) is well protected by the 
CSP that provides the Cloud service used by the CSC. In general, the inability to address these problems may create a 
lack of trust that, in turn, may reduce the consumers' appetite for purchasing connected products, and prevent the IoT 
from fulfilling its true potential. 

The data privacy Use Case can be illustrated by a number of examples taken from various verticals: 

• Electrical Smart Grids: collection of user data and anonymization. 

• Agriculture: exchange of data between equipment, private storage of field information (crop, etc.). 

• Connected cars: security coming together with guaranteed privacy policies. 

• And many more, etc. 
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The reliance of IoT systems on the use of data and the potential issues associated to its management (and protection) 
have increased the need for ensuring that information is well protected by guaranteed safeguards with a good level of 
transparency. The question of privacy is going to be shaped by the General Data Protection Regulation (GDPR [i.5]) 
that is about to enter in force in Europe. GDPR is harmonising the current data protection regulations across EU 
member states, with strict data compliance stipulations and potential huge financial penalties for those when the rules 
are breached. 

GDPR is not dealing specifically with Cloud Service Providers, but it has implications for organizations that use cloud 
services to store data. As stated in [i.6], "[...], the adoption of cloud computing raises challenges in the face of new, and 
often competing, privacy regulations across various jurisdictions, as well as evolving cybersecurity threats. For 
example, organizations that rely on multiple cloud service providers may have little or no control over the movement of 
their data through different data centres around the world. Similarly, it is not always clear whether the data custodian 
or the third-party service provider is accountable to protect the data, or which sets of data protection laws apply". 

GDPR will have a significant impact on the Cloud Computing industry, especially on Cloud Service Providers who will 
have to provide a significantly higher level of transparency about the elements of their internal sub-structures that have 
legal significance (e.g. vis-à-vis Third-Party subcontractors). 

As such, the consequences of the introduction of GDPR [i.5] on the architectures of IoT systems are not yet fully 
understood. At this stage, it is not clear yet whether or not virtualization (and the use of microservices in particular) will 
improve the way privacy is currently handled. An example of such questions is multi-tenancy: on the one hand, 
virtualization can help by providing different IP addresses to access the data of different tenants (thus better protecting 
one tenant's data against - potentially malevolent - access to data from other tenants) whereas, on the other hand, multi-
tenancy can be provided without separating the databases of two different tenants. Overall, the answer to the question 
will depend on the architecture choices and, even more importantly, on the implementation. Altogether, though the 
impact of GDPR is expected to be significant on IoT virtualization, it is probably too early to assess it, specially via a 
PoC. 

5.5 The use case selected as a proof-of-concept 
A Proof-of-concept (PoC) of IoT Virtualization is developed in ETSI TR 103 529 [i.2]. This PoC is an implementation 
of the "Horizontal Up and Down Auto-Scaling" Use Case described above.  

The main reason for the choice of this UC is that it demonstrates the feasibility of IoT Virtualization on a "real-life" Use 
Case applicable to a large number of "verticals". Auto-Scaling has been seen, in the examples above, as a very critical 
feature in virtualized IoT: the PoC is also a way to validate its applicability to IoT systems. In addition, it also makes 
use of a great number of the Open Source Software components that are described in ETSI TR 103 528 [i.1]. 

It can be noted that the use of Auto-Scaling may not always be necessary in dealing with burst situations. However, 
indications to developers on the concrete use of this technique in a real implementation is useful, and it is an additional 
rational for its selection in the Proof-of-Concept (see ETSI TR 103 529 [i.2]). 

Beyond the validation of the basic concepts that are implemented in the PoC (e.g. microservices based architecture, 
layered architectural model), it is important to consider that - in a "real-life" implementation context - the auto-scaling 
decision mechanism itself may be a differentiating factor, and therefore the possibility to implement Artificial 
Intelligence-based "auto-scaling". To this extent, though the "auto-scaling" features in the PoC are implemented with a 
"traditional" algorithmic approach where decisions are calculated on the basis of (more or less) hard-coded rules, the 
description of the PoC architecture makes room for the possible usage of: 

• Monitoring functions that may allow human to use additional rules; or 

• Artificial Intelligence systems (e.g. Q-learning) with more refined sets of rules. 
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6 Cloud Computing features for IoT Virtualization 

6.1 Introduction 
There are many requirements to be filled to get a full-fledge IoT system. The IoT community has developed a very large 
number of architectures, platforms, solutions and standards to deal with these requirements. The current clause is not 
going to address them extensively: it will rather focus on specific IoT requirements that can be effectively addressed by 
Virtualization and on specific features of Cloud Computing that can benefit to IoT systems. 

Some of the requirements identified are regarding the functionalities that the Virtualization of IoT is expected to bring. 
In addition, a number of non-functional requirements (e.g. high availability) are described in details since they may be 
those for which Virtualization may bring the most effective solutions. 

The Virtualization of IoT will also make use of microservices, a key feature of Cloud Computing. Microservices have 
been massively used in Cloud Computing in support of the implementation of open Cloud architectures. This clause 
will introduce them as an element for the definition of virtualized IoT systems. 

6.2 Functional requirements 

6.2.1 Introduction 

The functional requirements for IoT systems are extremely varied and most of them will apply to IoT Virtualization 
unchanged. The purpose of this clause is to address only a few of the functional requirements that are specific to IoT 
Virtualization. 

6.2.2 Multi-tenancy 

6.2.2.1 Definition 

Multi-tenancy is an architecture principle that allows a single instance of a software application to serve multiple 
customers. Within a multitenant architecture, a software application is designed to provide every customer with a 
dedicated portion of the software instance including data, configuration, user management, etc. All multi-tenant 
architectures work on the same principle: all customers will benefit from a given solution through a common 
infrastructure. When all of customer data is handled using the same software resources, the architecture design should 
be extremely rigorous and prevent from data leakage: client A will have no access to the data of the client B (and 
vice-versa). This is essential requirement of multi-tenancy: the data models should be designed in order to be filterable 
by a client identifier. 

A multitenant application architecture helps optimize the use of hardware, software, and human capital. Its value is 
related to resource usage optimization and therefore to cost reduction. An additional advantage of multitenant 
applications is in software lifecycle management: the software upgrade of a given software instance can be done for any 
customer of the tenant instead of being applied to all software for all customers. 

6.2.2.2 Comparison with multi-instance architectures 

The choice of multi tenancy vs. multi instance architecture depends on a number of criteria such as: cost, customer 
expectations, extensibility needs, security challenges, etc. With the provision of multi-tenancy, configuration and 
management of data is more complex since it has to apply a specific method to prevent the leakage of data (using a 
single database) between the tenants. A Multitenant application should be put in place carefully to avoid major 
problems. For instance, it is very important to: 

• separate the persistence of data from each tenant and its users; 

• separate the configuration of each tenant; 

• do not let the data pass between the tenants. 



 

ETSI 

ETSI TR 103 527 V1.1.1 (2018-07) 16 

6.2.3 Massive Data processing 

In IoT systems, high-volume and high-velocity data is produced, analysed, and used to trigger action. There are two 
ways to process data: streaming data processing and batch data processing.  

Under the streaming model, the processing is usually done in real time. By building data streams, one can feed data into 
analytics tools as soon as it is generated and get near-instant analytics results. Complex event processing (CEP) is used 
for streaming data processing with the goal to identify significant events and respond fast. 

Under the batch processing model, a set of data is collected over time, then fed into an analytics system. Batch 
processing is most often used when dealing with extremely large amounts of data, and/or when data sources are legacy 
systems that are not capable of delivering data in streams. Batch processing is adequate in situations where  
non-real-time analytics results is needed, and when it is more important to process large volumes of information than to 
get fast analytics results.  

  

Figure 2: Batch and Streaming data processing 

The management of huge amount of data is one of the challenges of Big Data, and the necessity to address 
simultaneously the "4V" properties: Volume, Velocity, Variety and Veracity. IoT is one of the many domains that is 
making use of Big Data is solutions, in particular when it comes to three first "V"s. The question of Veracity is key in 
IoT and some solutions need to be provided to address specific issues of Data Quality. This point is addressed in 
Annex A where some potential solutions are outlined regarding Fault Detection and Isolation. 

6.3 Non-functional requirements 

6.3.1 High-throughput 

High throughput is in general associated with the use of many and parallel computing capabilities to accomplish a 
computational task. An efficient use of all available computing resources is the key to achieving high throughput. 
However, the quest for high throughput is not concerned about the number of operations per second, but rather by the 
number of operations over a longer period of time, typically days or months. In essence, high throughput is more 
interested in how many jobs can be completed over a long period of time instead of how fast. 

Some IoT applications require processing large data-sets and need to use cloud computing capabilities to be able to 
process these data sets with a high throughput. For instance, in Industrial IoT, time series are generated very frequently 
by a substantially large number of devices and processed using high-throughput capabilities. In other scenarios, 
gateways generate a large quantity of logs (not IoT data per se) which need to be processed at high throughput for the 
purpose of e.g. preventive maintenance. 
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There is no single technique to achieve high throughput. Messaging (as described in clause 6.4.2) combined with 
parallelism provides an important enabler to high throughput. 

 

Figure 3: Achieving high throughput processing of data sets 

Figure 3 depicts a producer of data, that needs processing which sends data sets using round robin strategy to multiple 
broker instances. The processing servers are consumers of the brokers, they subscribe to a specific topic they need to 
process. This figure shows how both processing and communication can be scaled horizontally in order to cope with 
high data throughput. 

6.3.2 High-availability 

High-availability embodies the idea of access to services, tools and data anywhere and at any time. 

High-availability combines software with industry-standard hardware to minimize downtime by quickly restoring 
essential services when a system, component, or application fails. While not instantaneously, services are restored 
rapidly, often (and preferably) in less than a minute. 

For highly-available applications, a service needs to be resilient to failures and able to restart on another machine. The 
problems of failures (and the challenge for resiliency support) are observed during various scenarios, such as: 

• Failures occurring when the machine where the service is running fails. 

• Failures occurrence due to a service-internal hard problem. 

• Failures occurring during an application upgrade. The running service should determine whether it can 
continue to move forward to the newer version or to roll back to a previous stable version to maintain a 
consistent state. In this case, one has to consider the following points: are enough machines available to keep 
moving service upgrade, and how to recover previous versions of the service. 

The service should be designed so that the process can be restarted at any time with no data loss.  

The easiest way to make a service resilient is to have multiple hosts running the service instance and managed by a load 
balancer. The service consumers have no knowledge of whether there is one or multiple service instances. The load 
balancer is capable of:  

• Distributing requests between service instances based on algorithms (e.g. round-robin). 

• Shutting down remote service instances when failures are detected. 

• Adding service instances. 

Running multiple service instances gives the capability to handle higher load and to avoid single point of failure.  
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6.3.3 Low latency 

6.3.3.1 Requirements 

Low latency is essential to time-critical applications such as autonomous driving or industrial automation. This feature 
should be supported by system architecture and design. However, there is no single mechanism to achieve low latency - 
programmers and system architects need a toolbox so that they can mix-and-match tools to meet the different 
requirements and traffic patterns associated with applications.  

Examples of such tools include brokers capable of routing IoT application messages in (near) real-time. Another 
example is MapReduce which may make use of massive in-memory databases capable of meeting low-latency 
requirements. 

The use of Edge Computing allows to reduce network latency by moving computing resources closer to the field 
domain where an action takes place. 

6.3.3.2 MapReduce 

MapReduce is a computer development architecture, invented by Google, in which parallel processing of large data sets 
is performed over distributed computing resources with an objective to provide low latency to answer requests. 

MapReduce allows to manipulate large amounts of data by distributing them in a cluster of machines to be processed. 
The terms "map" and "reduce", and the underlying concepts, are borrowed from the functional programming languages 
used for their construction (map and reduction of functional programming and table programming languages). 

As the name MapReduce suggests, the "reduce" phase takes place after the completion of the "mapper" phase: 

• The first step is the mapping, where a block of data is read and processed to produce key-value pairs as 
intermediate outputs. The node analyses a problem, splits it into sub-problems, and delegates them to other 
(children) nodes (which can do the same recursively). The sub-problems are then processed by the different 
nodes using the Map function. 

• The output of the Mapper or map job (key-value pairs) is an input to the Reducer. 

• The Reducer receives the key-value pair from multiple map jobs. The children nodes return their results to the 
parent node that solicited them. This calculates a partial result using the Reduce function which associates all 
the corresponding values to the same key. 

• Then, the Reducer aggregates those intermediate data tuples (intermediate key-value pair) into a smaller set of 
tuples or key-value pairs which is the final output. 

An important concept of MapReduce is that, instead of transferring data to the processing resource, the processing is 
moved close to the data and only results are returned back. 

 

Figure 4: The MapReduce Concept 
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Several frameworks have emerged to implement the MapReduce concept. The most famous one is Hadoop, which is 
developed by the Apache Software Foundation.  

6.3.3.3 In Memory Databases 

In-Memory Databases use (in-)memory for data storage. This is in contrast to databases that use hard disks to store data. 
Memory databases are faster than disk-based ones because disk access is substantially faster, and internal optimization 
algorithms are simpler to execute and require fewer CPU instructions. 

In-Memory databases are gaining traction as memory costs are reducing. Application that increasingly require 
in-memory databases are in particular those for which low latency is required. Examples include real-time data 
analytics. 

6.3.3.4 Edge Computing 

IoT Virtualization is expected to benefit from Cloud Computing technologies and solutions. However, there are some 
limitations of Cloud Computing that hinder the fully effective implementation of some of the promising IoT 
virtualization use cases (e.g. the "Horizontal up and down auto-scaling" use case discussed in clause 6.2).  

Recently, Edge Computing has started to emerge as a new approach that may complement Cloud Computing in some 
cases where the availability of computing resources closer to the devices is required. The support of Edge Computing 
can be seen as a way to support requirements related to low latency (faster computing), massive handling of data 
(reduced amount of data transfer toward the core) or fault tolerance (replication of computing resources at the edge). 

With Edge Computing, Cloud Computing is going through a fundamental shift in which the traditional model of 
accessing highly centralized resources is replaced by a distributed, decentralized architecture. This new computing 
paradigm brings the core building blocks of cloud (computing, storage and networking) closer to the consumers 
(devices). 

Though Edge Computing is still in the maturing phase, the support of Edge Computing will be a key requirement for a 
very large range of IoT Virtualization use case and for the associated platforms. There are hundreds of use cases where 
reaction time is the key value of the IoT system. The main goal of Edge Computing is to minimize latency by bringing 
the public cloud capabilities to the edge, in contrast with "traditional" Cloud Computing where constantly sending the 
data back to a centralized cloud increases latency.  

The implementation of Edge Computing can be achieved by two approaches:  

• Device Edge: custom software stack emulating the cloud services running on existing hardware. 

• Cloud Edge: the public cloud seamlessly extended to multiple point-of-presence (PoP) locations. 

Device Edge: Customers install and run Edge Computing software in existing environments. The hardware can be 
dedicated or shared with other services. In many scenarios, the edge stack is run on low-powered devices running low 
consumption processors (e.g. ARM). All the sensors talk to the local edge device, which manages the connectivity with 
the cloud. 

 

Figure 5: Device Edge 

Figure 5 illustrates a device edge architecture. A specialized device is acting as the local IoT Gateway that mimics the 
public cloud capabilities. 

Microsoft Azure IoT Edge is an example of device edge software. It attempts to bring device registry, device twins, 
device communication, local storage and synchronization capabilities. 

https://en.wikipedia.org/wiki/In-memory_database
https://en.wikipedia.org/wiki/In-memory_database
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Cloud Edge: It is an extension of the public cloud in a highly distributed form. Unlike device edge, cloud edge is 
owned and maintained by the public Cloud Service Provider. The cloud edge becomes a micro-zone, a logical extension 
to the existing hierarchy of regions and zones. Micro-zones may extend public clouds to thousands of new locations, 
enabling developers to keep applications as close as possible to consumers. With just a single hop to the data centre, the 
latency involved in accessing traditional cloud platforms is dramatically reduced.  

The concept of Cloud Edge is illustrated in Figure 6. 

 

Figure 6: Cloud Edge 

6.3.4 Security 

Security is a key enabler (or, when not properly taken into account, a roadblock) of Cloud Computing. As stated in [i.6], 
"Cloud computing systems can address security requirements such as authentication, authorization, availability, 
confidentiality, non-repudiation, identity management, integrity, audit, security monitoring, incident response, and 
security policy management". 

Security is a global requirement for every IoT system that impacts every layer of the system architecture (making it a 
sort of "vertical" sub-system as it will be depicted below in clause 7) and every component of the system design, in 
particular when security by design techniques are used, which is expected to be the case for emerging IoT systems that 
are developed concurrently with the maturation of security-by-design.  

IoT virtualization does not reduce the importance of security requirements, nor the complexity of the implementation of 
security across the components of the virtualized IoT system. In particular, Information Security (which broadly covers 
the protection of the confidentiality, integrity and availability of information assets) is a major challenge where Identity 
and Access Management (IAM) is a key building block in any solution. IAM involves the management of individuals 
and ICT resources in an organization and the definition and enforcement of policies for the authentication and resource 
authorization. It involves a number of techniques amongst which the support for access control (including role-based 
access control) is required for any effective and trustable implementation. 

6.4 Features in support of virtualized IoT implementations 

6.4.1 Microservices 

6.4.1.1 Definition 

In order to get the most of the integration of IoT and Cloud Computing, the use of microservices should be considered. 
Microservices are an architectural approach to developing applications as a set of small services, where each service is 
running as a separate process, communicating through simple mechanisms.  
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The advantages of a microservice-based architecture stem from its main feature, the decomposition of a service or an 
application into many independent units (i.e. smaller component). As a result, one can develop, deploy, upgrade and 
scale every microservice independently of the others. This enables to use an optimal amount of resources and to make 
microservice-based architectures a natural fit for achieving both scalability and elasticity. Developing microservices 
separately enables the use of different technologies for each microservice. Possible example of microservices in the 
context of IoT include: communication with IoT devices, protocol adaptation, data processing, communication with 
databases and visualization. 

6.4.1.2 Comparison to monolithic architectures 

The advantages of microservices architecture are best identified when compared to the traditional "monolithic" 
architectures. A monolithic application has all of its components packed together. For instance, monolithic IoT 
applications may include the whole computing logic for communication with IoT devices; processing of devices data; 
potential communication with databases and visualization, packaged in a single logical executable. Monolithic IoT 
applications may become so large that managing them - and moreover updating them - can become extremely complex. 

While errors in monolithic IoT applications may be really expensive as they cause the whole application to crash, errors 
in microservices applications cause only the corresponding microservice to collapse. This means that the  
microservices-based application is still running, and only the specific functionality implemented by the microservice is 
unavailable. The importance of this behaviour is even more apparent in IoT applications. For instance, if a microservice 
which communicates with a certain group of sensors crashes, that will not affect or stop the processing of the data 
provided by microservices which communicate with other sensors. The other components of the application will still be 
up and running.  

6.4.1.3 Impact on IoT solutions 

Microservices architecture have emerged in the recent years and consequently are not fully generalized with universally 
adopted development principles. However, most of the microservices applications share the same characteristics. In 
general, the microservices architecture is adaptable to the requirements of IoT applications.  

When developing applications, it is a good practice to break down the application into several components. The 
microservices architecture tends to componentize a project into services, where each service is running in its own 
separate process. Thereby, each microservice can be deployed and scaled independently. The componentization into 
microservices allows to address the problem of the vast heterogeneity of IoT devices. It is possible to have distinctive 
microservices for devices that communicate using different protocols. These microservices might act as a proxy. The 
problem of adding new devices which communicate using a non-supported protocol is usually resolved by adding a 
microservice acting as a proxy between protocols. 

Another advantage of microservices is regarding the programming languages. Monolithic applications are usually 
written in one programming language, and the use of different languages is possible but often brings additional 
problems. On the other hand, microservices enable a decentralized approach that encourages developers to write 
different microservices using different technologies. This characteristic is especially helpful to IoT applications. For 
instance, it enables the use of technology for communication with devices different from the one used for data 
processing, or the one used for visualization as well. Microservices enable all of the technologies to be integrated 
without having to worry about compatibility issues.  

6.4.1.4 Scaling microservices 

The microservices architecture brings more freedom for deployment and management of applications in cloud 
infrastructures. In order for an application to be elastic, one will ensure that every microservice uses an optimal amount 
of resources. For scaling of microservices, both Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) can 
be used. In particular, PaaS environments are very suitable for microservice-based applications: they offer a platform, 
which is responsible for low-level operations like management of virtual machines, application deployment, load 
balancing, etc. Altogether, PaaS supports an easier management of applications by enabling the designers and 
developers to focus on the IoT features and not on the low-level part of the application. On the contrary, PaaS is not 
supporting monolithic applications where developers also have to take care of the configuration and management of the 
application. 
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6.4.1.5 Providing persistency for microservices 

Microservices persistence means persistence database tables and event streams, in addition to traditional files. In 
microservice-based architectures, the approach to persistence is different: 

• The operational state is not stored in files but in a database table, typically one that is dedicated to the 
microservice (to accomplish the isolation of duties). The complete state of an application at a given time is 
distributed across its stores: it is the collective state of what has been read from the input stream, what has 
been stored in the operational database, and what has been sent to the output stream. 

• The units of work are no longer transactions but events, typically received via a publish/subscribe channel by 
upstream microservices. 

• The application history (logs, metrics) is still produced and has to be persisted somewhere for monitoring. 
Logs are usually saved to a file, and metrics to a stream. 

Using a database per service has the following benefits: 

• it helps ensure that the services are loosely coupled. Changes to one service's database does not impact any 
other services; 

• each service can use the type of database that is best suited to its needs. For example, a service that does text 
searches could use ElasticSearch. A service that manipulates a social graph could use Neo4j; 

and the following drawbacks: 

• Implementing business transactions that span multiple services is not straightforward.  

• Implementing queries that join data that is now in multiple databases is challenging. 

In the following paragraphs, some current approaches to sharing data in microservices architecture is presented together 
with their advantages and disadvantages: Shared database; Dedicated microservice; and Event/subscription. 

Shared database 

To avoid concurrency and inconsistency problem of shared data across databases, there are essentially two approaches: 
transactions and eventual consistency. 

Transactions are mechanisms that allow database clients to make sure a series of changes either happen or not. In other 
words, transactions allow us to guarantee consistency. In the world of distributed systems, there are distributed 
transactions. There are different ways of implementing distributed transactions, but in general, there is a transaction 
manager that will be notified when a client wants to start a transaction. The downside to this approach is that scaling is 
usually harder. Transactions are useful in the context of small or quick changes. 

Eventual consistency deals with the problem of distributed data by allowing inconsistencies for a time. In other words, 
systems that rely on eventual consistency assume the data will be in an inconsistent state at some point and handle the 
situation by postponing the operation, using the data as-is, or ignoring certain pieces of data. Eventual consistency 
systems are easier to reason about but not all data models or operations fit its semantics. Eventual consistency is useful 
in the context of big volumes of data. 

Dedicated microservice  

In this approach, a new microservice is developed to manage a shared database rather than allowing the microservices 
to access the database directly. This microservice manages all access to the shared data by the other services. By having 
a common entry point it is easier to reason about changes in various places. For small volumes of data, this can be a 
good option as long as the new microservice is the only one managing the data.  

Event/Subscription model 

In this approach, rather than allowing each service to fetch directly the data, services that make changes to data or that 
generate data allow other services to subscribe to events. When these events take place, the services that have 
subscribed receive the notification and make use of the information contained in the event. This means that, at no point, 
a microservice may be reading data that has been modified by other microservices. The simplicity of this approach 
makes it a powerful solution to many use cases. However, there are downsides: a set of events will be integrated into the 
data generating microservice and losing events becomes a possibility. 
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6.4.1.6 Security for microservices 

The introduction of microservices in virtualized IoT architectures has also an impact on their security architecture. 
When an architecture is implemented as a number of interacting microservices, the protection of the microservices 
themselves and of the inter-services communication mechanisms is an essential requirement. 

One effective way to secure a microservice is to secure its API. A secure API to a microservice can guarantee the 
confidentiality of the information it processes, by making it visible only to the users, applications and servers that are 
authorized to consume it. It should be able to guarantee the integrity of the information it receives from the clients and 
servers it collaborates with, so that it will only process such information if it knows that it has not been modified by a 
third party. The ability to identify the calling systems and their end-users is a prerequisite to guarantee those security 
qualities. 

6.4.2 Inter-Process Communication (IPC) in microservices architecture  

6.4.2.1 Communication Mechanisms 

When selecting an IPC mechanism for a service, it is useful to think first about how services interact. There are a 
variety of interaction styles which can be categorized along two dimensions. The first dimension is whether the 
interaction is one�to�one where each client request is processed by exactly one service instance or one�to�many 
where each request is processed by several service instances. The second dimension is whether the interaction is 
synchronous where the client expects a timely response from the service, or asynchronous where the client does not 
block while waiting for a response, that is not necessarily sent immediately. 

6.4.2.2 Synchronous IPC communications: RESTful communication  

 

Figure 7: RESTful IPC 

In synchronous communications, a call is made to a remote service which blocks until the operation is achieved. With 
synchronous communication, one knows when requests have been fulfilled successfully or not. The synchronous 
communication mode enables request/ response collaboration style, where a client initiates a request and waits for the 
response.  

A popular architectural style for request/response communication is REST. RESTful microservices, as shown in 
Figure 7, communicate directly and synchronously with each other, without the need for any additional infrastructure. 
RESTful communications are based on HTTP verbs like GET, POST and PUT. An important concept for RESTful 
collaboration is resources. A resource can be thought of as a thing that the service knows about, for example an order. 
A service manages the representation of this order on requests (creating different representation, updating, deleting, 
etc.). It should be noted that REST is independent of the underlying protocol and can be implemented using several 
ones such as HTTP, CoAP, etc. 
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6.4.2.3  Asynchronous IPC communications: Messaging  

Asynchronous communication is suitable for long-running jobs, where constantly maintaining the connection between 
the service and the client is not feasible. It is also useful when low latency is required. Asynchronous communications 
invert the approach: a client does not request for something to be done, but instead says that something happened and 
waits for other services to react.  

In an asynchronous messaging-based system (as depicted in Figure 8), both input and output from services are defined 
as events. Each service subscribes to the events that it is interested in consuming, and then receives these events reliably 
when the events are placed on the queue by other services.  

 

Figure 8: Asynchronous Messaging IPC  

This publish/subscribe system is implemented by a message bus (in a message broker). The message bus can be 
designed as a middleware, with the API needed to subscribe or unsubscribe to events and to publish events. Different 
message bus implementations are available and each implementation will determine which protocol to use for 
event-driven, message-based communications. For instance, the AMQP protocol has proven that it can achieve reliable 
queued communication.  

6.4.2.4 Hybrid IPC communications 

With hybrid IPC style, each service typically uses a combination of synchronous and asynchronous interaction styles (as 
shown in Figure 9). For some services, a single IPC mechanism is sufficient. Other services might need to use a 
combination of IPC mechanisms.  

 

Figure 9: Hybrid IPC communications 
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7 Implications of IoT virtualization 

7.1 Introduction 
This clause is addressing the consequences of the introduction of virtualization in IoT systems on their architecture and 
design. Mainly two major impacts have to be noticed: 

• On the one hand, IoT system architectures based on microservices should be able to support the split of 
monolithic services into a (potentially significant) number of microservices that are able to evolve relatively 
independently from each other and to communicate in a safe, secure and efficient manner. To this extent, a 
microservices architecture is a key element. One such architecture is described below. 

• On the other hand, the possibility to split an architecture into microservices that can be implemented by 
separate components (and in particular by Open Source Software components) does not mean that the resulting 
architecture be largely unstructured. Actually, the possibility to define architectural layers and group them in a 
High-Level Architecture (HLA) for IoT virtualization may allow for the most effective selection and 
combination of such components. 

7.2 Microservices for IoT Virtualization 

7.2.1 Microservices Architecture 

Figure 10 describes a Microservices Architecture for IoT systems. Each microservice handles an IoT service logic. 

 

Figure 10: Microservices Architecture for IoT Virtualization 

The following microservices are considered: 

• Protocol adaptation 

 This entity plays the role of an Interworking Proxy Entity which enable seamless communication for legacy 
devices such as Zigbee, Phidgets, and many other technologies with by performing mapping/converting 
operations. 
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• Field device protocol 

 This service provides a point of contact for communication between users and the system using several 
applications protocols. It makes use of existing network connectivity and manages all security aspects for 
secure session establishment and teardown. For each protocol, a field device protocol microservice is 
provided. 

• Request processing and IoT orchestration logic 

 This service provides a protocol independent service for handling users requests. It is also responsible of the 
coordination between the microservices. 

• Device Management 

 This service provides functions pertaining to device/gateway life cycle management, such as software and 
firmware upgrade and provides mechanisms for fault and performance management. 

• Data Storage 

 This service ensures the persistence of the system by storing information related to IoT applications and 
microservices states. 

• Authentication and Authorization 

 This service implements authentication, authorization, and key management functions to establish secure 
communication between cloud applications and the system. 

• Subscription notification 

 This service defines the set of procedures allowing an application to subscribe and be notified when specific 
subscription criteria are matched. 

• Cloud application APIs 

 This service implements bootstrapping, authentication, authorization, and key management functions to 
establish secure communication between cloud applications and the system. 

As shown in Figure 10, a hybrid Inter-Process Communication (IPC) architecture is deployed: a message broker is in 
charge of handling communication between microservices: high decoupling and RESTful communication between 
microservices is supported, in order to minimize microservices communication processing when needed. 

7.2.2 The Microservices Architecture in practice: an example 

Figure 11 provides an example of message flow explaining how microservices could be used for processing incoming 
requests from field devices or gateways. For simplicity, the message broker is not shown in this figure, but it is assumed 
all flows apart from 1 and 6 would take place using the broker. 
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Figure 11: Message Flow Example 

Step 1:  An incoming request is received by the Field device protocol microservice. This request would typically be 
using a binding protocol such as HTTP, CoAP or MQTT.  

Step 2: A first security processing takes place, that includes message decryption, authentication headers and integrity 
validation. Then a Request primitive is extracted and syntactically validated: this Request primitive is now 
protocol independent. 

Step 3: The Request primitive is sent to the Request processing and IoT orchestration logic microservice.  

Step 4: This microservice would need several interactions with Data storage. First the primitive is validated beyond 
basic syntactic processing. The URI validity is checked using the stored data. Then the Access Control Policies 
are checked to validate the request is valid from an authorization perspective. Finally (and optionally), data 
pertaining to the Request primitive is stored using the Data storage microservice. 

Step 5: A Response primitive is sent back to Field device protocol microservice. 

Step 6: A Response is sent back to the originator in step 1. It will use the same protocol binding (HTTP, MQTT, 
CoAP, etc.) as in step 1. 

Step 7: Based on the existence of subscriptions impacted by the Request primitive, subscriptions and notifications 
processing is triggered.  

Step 8: The Subscription notification microservice interacts with the Data storage microservice to generate 
notifications primitives to be sent to subscribers as shown in Step 9 and Step 9.bis. 

Step 9 and Step 9.bis:  
The notification primitives are sent to the subscriber entities in the field or cloud domain. 

7.2.3 Relationship of the microservice service HLA to oneM2M 

oneM2M defines a list of Common Service Functions (CSFs) as an "informative architectural construct which 
conceptually groups together a number of sub-functions" (see ETSI TS 118 101 [i.7]). Figure 12, extracted from this 
document, provides the list of these CSFs. 
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Figure 12: Common Services Functions defined by oneM2M  

The CSF descriptions are provided for the purpose of understanding of the oneM2M Architecture functionalities and are 
informative. The CSFs contained inside the Common Services Entity (CSE) can interact with each other but ETSI 
TS 118 101 [i.7] does not specify how these interactions take place. CSFs are actually defined in order to provide 
guidelines for implementers. Only the interactions on the reference points between CSEs and between applications 
(AEs) and CSEs are mandated in oneM2M. 

Additionally, CSFs have not been defined with a micro service architecture in mind. Indeed, the choice of dividing a 
CSE into microservices should always be left up to specific implementations, which means that the optimizations made 
for two different deployment scenarios may result in two different choices of grouping into microservices. 

The example provided in clause 7.2.1 is rather generic and has not been provided with oneM2M in mind. Nevertheless, 
it is possible to reconcile the microservices architecture (presented in clause 7.2.1) and the oneM2M architecture, 
especially the functional architecture (presented in Figure 12). This is the purpose of Figure 13. 

It should be noted that, even if a given oneM2M Service Entity (SE) can be mapped onto a single microservice, this is 
not meant to be the general case: for implementation efficiency considerations, a oneM2M SE will be mapped onto 
more than one microservice. This is the main expected benefit of introducing the Microservice Architecture. 
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Figure 13: Comparison between the microservices architecture and oneM2M CSF 

The following mappings between oneM2M CSFs and the Microservice Architecture (developed in clause 7.2.1) can be 
made: 

1) Protocol adaptation is implemented in oneM2M as an Application Entity. It is functionally equivalent to the 
Protocol Adaptation IPE of the microservice architecture. 

2) Subscription management CSF is equivalent to the microservice in the architecture. 

3) Device management CSF is equivalent to the microservice in the architecture. 
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4) Data management and repository CSF is equivalent to Data storage microservice. 

As noted above, a given oneM2M CSF will be mapped onto several microservices. In some case, the mapping is less 
obvious. The Field device protocols microservice as well as the Cloud application API microservice have no equivalent 
in the oneM2M CSFs. Indeed, in some way, they are part of the reference points Mcc and Mca which are used for 
communication between oneM2M functional entities. This confirms that microservices as presented in clause 7.2.1 are 
closer to a real implementation, while oneM2M CSFs are providing guidelines. 

7.3 One High-Level Architecture for IoT Virtualization 

7.3.1 Functional Architecture for IoT Virtualization 

Figure 14 introduces one example of a structuration of the functional architecture into layers (and sublayers) with an 
indication of the main functions that are expected to be provided in each of the layers and sublayers. In addition, two 
vertical functions are added related to cross-layer functionality: security and management. 

The focus in the present document is on the functions. This architecture is also used in ETSI TR 103 528 [i.1] and the 
functions described in the layers and sublayers are used for the identification of potential Open Source Components that 
can support the implementation of the IoT microservices. 

 

Figure 14: A High-Level Architecture for IoT Virtualization 

The above architecture is one example (amongst other possible ones) that is in particular dealing with a structuration of 
the generic microservices that could be found in an IoT Layer. 

7.3.2 HLA for IoT Virtualization and oneM2M HLA 

The Microservice Architecture described in Figure 14 is meant to be generic in the sense that it can apply to a large 
number of systems in various business sectors. It provides a way to structure the provision of functionality with layers 
that ensure a certain degree of separation that can be supported by APIs and implemented via microservices. The layers 
described can be refined in order to address specific issues. For example, it could be possibly needed to have an "Edge 
layer" (not represented in Figure 14) sitting under the "Cloud Infrastructure" and meant to handle specific requirement 
(e.g. low latency) on virtualized resources.  
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The respective positioning of oneM2M Common Service Entities (CSE) and the microservices in the Microservice 
Architecture is shown in Figure 15. To better understand what is represented, the following observations can be made: 

• There is a difference between the CSFs (that are specified via a standard) and the microservices that are one 
possible implementation of (a subset of) a CSF. 

• All (as well as only a part of) the microservices described on Figure 14 can be included in a given CSE. The 
set of implemented microservices and their chosen implementations can (and probably will) be different from 
one CSF to another. Consequently, there is no standardized mapping of one CSF to microservices. 

• Some alternatives for the choice of an implementation of microservice is addressed in ETSI TR 103 528 [i.1]. 

It has already been noticed (as described in Figure 13) that the mapping of microservices in the Microservice 
Architecture with oneM2M CSEs can be one-to-one. However, this is not the general case and, moreover, the use of 
microservices is, in principle, a way to map a given oneM2M CSE on more than one microservice, thus enabling the use 
of more fine-grain services, evolving separately and eventually developed with different technologies (and different 
developers). 

 

Figure 15: Mapping the Microservice Architecture and oneM2M Common Service Entities 

An important point of notice is regarding the role of the orchestrator in the mapping of the microservices HLA. The 
following remarks can be made: 

• No provision for an orchestrator is made in the oneM2M architecture specification. 

• The global orchestrator is entirely outside of the CSE. It includes in particular: 

- In the Orchestration function: the microservices of the HLA Orchestration layer and an Orchestration 
Agent that interacts with an Orchestration Agent in the CSE Orchestration layer. 

- In the Monitoring function: the microservices of the HLA Monitoring layer and an Monitoring Agent 
that interacts with an Orchestration Agent in the CSE Monitoring layer. 
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In Figure 15, no assumption is made regarding the Application Entity (AE): the implementation of functionality in the 
AE can be done in a variety of ways, depending on the needs of the application designers and developers. In some 
cases, the implementation can be made without using microservices (and an underlying Microservice Architecture).  

In case the implementation is done with microservices, some of the functional blocks present in the CSE part of 
Figure 15 (e.g. data collection, communications, computation, storage, search engine, data usage) can be (fully of 
partly) present in the AE. However, whereas the microservices in the CSE are expected to be rather generic, those in the 
AE will probably be much more "domain specific". 

The CSFs have not been defined with a micro service architecture in mind. Indeed, the choice of dividing a CSE into 
microservices should always be left up to specific implementations, which means that the optimizations made for two 
different deployment scenarios may result in two different choices of grouping into microservices. 

The example in Figure 16 is showing a possible implementation where two CSE are involved that may embed different 
functionalities: 

• A CSE with all the microservices described in Figure 15. This could typically correspond to one possible 
implementation of microservices on a cloud-based platform that will support all the common services offered 
for Data Collection, Communication, Computation, Storage, Search Engine, Data Usage. 

• A CSE with only a part of the microservices described in Figure 15. This could correspond to one possible 
implementation of microservices on a basic gateway that will not support parts of the common services whose 
implementation can be hindered by the limitations of the gateway. Services like Storage (if no persistence is 
required), Search engine or Data usage may not be implemented. 

 

Figure 16: An example of implementation options of the microservices HLA 
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8 Conclusions 

8.1 Implications 
The introduction of microservices and the support of Virtualization is expected to be a major improvement factor in the 
development of IoT systems. It is also important to note that this introduction comes with a number of impacts - and 
challenges - regarding the current approach to IoT systems. Amongst them: 

• Efficient implementations: 

 As already pointed out in the previous clauses, the introduction of microservices comes with expectation of 
improvement in the implementation of IoT systems, in particular in terms of efficiency. In order to ensure that 
the expected benefits will materialize, microservices will need to be supported by open architectures; a large 
catalogue of effective, easily available and possibly certified (OSS) components; supporting integration 
platforms, etc. Moreover, as soon as they will be part of large - and even complex - IoT systems, microservices 
will not be working in full isolation from others and their development will have to made with this in mind and 
depart from ad-hoc solutions. 

• Deconstruction of monoliths: 

 Microservices are specially expected to support the development of fine-grained components that interact with 
a plurality of others. In the case of existing IoT systems, their introduction may require that some currently 
used solutions (applications, building blocks) be split in smaller (interacting) units. This "deconstruction" may 
be quite significant - and require a certain amount of effort - to benefit from microservices. The support of an 
architecture - like the High-Level Architecture (HLA) mentioned in the previous clause - will be needed, as 
well as its mapping to other existing HLAs. 

• Role and place of legacy: 

 Not all IoT systems are greenfield and are incorporating existing (and sometimes long existing) elements. The 
introduction of microservices may not be possible for the entire system, for cost reasons as well as difficulties 
related to old or unmaintained technologies. The potential coexistence of old and new parts (the latter based on 
microservices) will require some adaptations, in particular as long as the communication mechanisms used by 
microservices may not be supported in the legacy part. 

• Federation of systems: 

 The question of federation of systems is much debated in the IoT community, in particular by the Research 
community, and somehow by the Standard community. The need for federation of IoT systems is becoming a 
credible requirement for some Use Cases like Smart Cities (and even in Industrial IoT). The impact of IoT 
Virtualization still needs to be assessed: the evaluation of relevant use cases may provide a useful input. 

• Security and trust: 

 Security is universally pointed out as a key enabler for trusted IoT systems. From this standpoint, there is no 
silver-bullet solution for security is the current (IoT) systems. The introduction of virtualization (and the 
widespread use of microservices) may not change this situation drastically without a specific effort. However, 
given the higher degree of flexibility combined with the possibility to use (trusted) open source components 
offered by virtualization, there is a possibility that more efficient security solutions be more easily introduced 
thanks to microservices. But this will come as a miracle, but only if this is taken as a central requirement by 
the microservices architects and developers. 

• Standards: 

 The most visible benefits of IoT virtualization (and the introduction of microservices) point to the massive 
reuse of OSS components. From this standpoint, the traditional role of standards is going to be challenged. On 
the other hand, the potential "deconstruction" of IoT systems may also require that some existing building 
blocks (and associated standard) are re-considered with a layering approach that may in turn promote the 
development of new standards. For instance, where a complex Application Server currently exist, 
virtualization may introduce the need for new interfaces that may become in turn supported by standards. 
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• Regulation: 

 IoT Virtualization will introduce new requirements on the systems concerned that are currently not apparent 
but may become significant. In particular, virtualization will introduce more consideration of the role of Cloud 
Service Providers and some of aspects of their solutions. Such aspects may involve business (such as Service 
Level Agreements) but also regulation, the example of GDPR being currently the most discussed one. 

• Education: 

 The technical expertise requirements for developing full-fledged IoT systems are quite high. They span a large 
range of capabilities such as IoT platforms and protocols, big data or security-by-design. The introduction of 
microservices is asking even more from the architects and developers: expertise on the development of the 
microservices themselves, on the integration of open source components, etc. This is going to be a challenge in 
terms of the education support for such varied and highly demanded profiles. 

8.2 Lessons Learned 
After the definition of the Microservices HLA and its applications to IoT Virtualization in clause 7, a more practical 
validation has been made. The experiences gained from the evaluation of the Open Source Components landscape (see 
ETSI TR 103 528 [i.1]) and from the implementation of the Proof-of-Concept (see ETSI TR 103 529 [i.2]) have 
produced guidelines for the architects and designers of IoT systems based on microservice architectures that can be 
found in both Technical Reports.  

In addition to the above cited guidelines, some lessons have been drawn regarding the approach taken in the present 
document. The main lessons learned are the following: 

• The approach taken in the present document has been confirmed by the complementary approach of selecting 
Open Source Software (OSS) components and of using (some of) them for the implementation of a Proof-of-
Concept (PoC). The principles of layering exposed in the Microservice HLA have been useful in the selection 
of the components for the PoC implementation and in the fast deployment of the resulting application. 

• One major enabling factor is that there is that there is a large number of OSS components available that have a 
very high level of technical readiness (TRL-9). The mix of chosen components can be different from one 
implementation to another one and may dictated by different considerations. 

• Taking into account the constraints at the edge requires attention in the architecture in order to fully support 
the implementation. The orchestrator can consider the resources at the edge in the same manner as those on the 
cloud but this can create problems if those resources are more constrained (size, computing power, storage 
capabilities, etc.) and may have less non-functional capabilities (e.g. latency on a Raspberry Pi ™) that may 
degrade the performance of the system: to alleviate this, deployment rules have to be carefully defined. 

• If applications are developed with the microservices approach, they can benefit from the advantages of 
virtualization (in terms of scalability, reliability, etc.) but also from the possibility to orchestrate the 
application microservices (via the orchestrator) and still benefit from what is done for the common services. 

8.3 Recommendations to oneM2M 
Based on the above considerations regarding the mapping of the Microservices HLA on oneM2M and on the feedback 
provided by the Proof-of-Concept (see ETSI TR 103 529 [i.2]), the following recommendations can be made to 
oneM2M: 

• Integrate the orchestrator in the oneM2M framework as a standardized element, with the corresponding 
Reference Point(s). 

• Add a "high-throughput/big data" binding to the current list, since no existing solution for this is included in 
oneM2M. 
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Annex A: 
Relationship to big data 
The boundaries between Cloud, IoT and big data are rapidly blurring, actually they may be seen by young developers as 
quite artificial. While the present document is focused mostly on IoT virtualization, this clause explores the relationship 
with big data. Big data is defined by Recommendation ITU-T Y.3600 [i.8] as a "A paradigm for enabling the collection, 
storage, management, analysis and visualization, potentially under real-time constraints, of extensive datasets with 
heterogeneous characteristics." 

Big data is often linked with the famous "4V" properties:  

• Volume;  

• Velocity;  

• Variety; and  

• Veracity.  

Volume denotes the dimension that gives the Big Data field its name. Velocity describes the pace of data generation 
from a diversity of data sources such as physical sensors. Variety describes different aspects of data sources, including 
structured and unstructured, multimedia, languages, etc. Veracity addresses both the natural and artificially injected 
noises and miss-information in many (open) data sources. 

There are several ways to qualify the veracity of collected data. Several studies have for example dealt with fault 
detection and isolation of IoT datasets or time series using rule-based fault detection as well as self-learning fault 
detection algorithms based on e.g. an approach of statistics sliding window. The rule-based approach would be based on 
available manufacturer datasheets including rules when available. The self-learning algorithm is based on determining 
trend vectors and comparing such vectors with longer term historic data. 

One of the challenges in IoT fault detection and isolation (as a possible scenario for data veracity) is to perform data 
processing in a passive manner, that is without impacting the normal operations of an IoT system. The advantage of 
passive monitoring is two-fold:  

1) no additional traffic to the devices and gateways, and  

2) runs without any disruption to the ongoing data collection mechanisms. 

Using a micro services architecture (as proposed in clause 7.2.1) with a message broker that allows a microservice to 
subscribe to receive specific data sets provides a perfect fit for a microservice performing IoT fault detection in a 
passive manner. The microservice would typically run using its own computing and memory resources while the broker 
would simply perform additional replication of collected data sets when such data is exchanged using the broker. This is 
explained in Figure A.1. 
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Figure A.1: Passive IoT fault detection and isolation module 

In Figure A.1, the Fault detection and isolation microservice can subscribe (from the message broker) to received 
datasets or time series data in order to perform the detection of one of the following faulty scenarios: 

• Outliers: A single isolated event that is outside the expected range of values to be returned. An example of 
outlier is provided in Figure A.2. 

 

Figure A.2: Fault detection: Outlier data-point 

• Stuck-at faults: A series of data values with little or no variation for a period of time longer than expected. 

• Spikes: A change in gradient over a period of time much greater than expected. The biggest difficulty with 
spikes is the issue of determining if a gradient change is part of normal behaviour such as alarm or a faulty 
behaviour of a sensor. A spike example is depicted in Figure A.3. 
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Figure A.3: Fault detection: Spike behaviour 
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Annex B: 
Relationship with NFV 

B.0 Introduction 
The Network Functions Virtualisation (NFV) Industry Specification Group (ISG) has been created in ETSI in 2012 with 
the overall vision that the application of Virtualization technology may help address many of the evolution challenges 
that new usages (such as IoT and M2M communications) pose to existing networks and, in turn, simplify the roll-out of 
network services, reduce deployment and operational costs and improve network management automation. 

As stated by ETSI: "With NFV, standard IT virtualization technology is adapted to consolidate many network 
equipment types onto industry-standard high-volume servers, switches and storage. This involves implementing network 
functions in software which can run on a range of industry-standard server hardware. This software can then be moved 
to, or introduced in, various locations in the network as required." (see http://www.etsi.org/technologies-
clusters/clusters/networks). 

B.1 Virtualization in the NFV Architecture 
The NFV ISG has initially worked on the identification of use cases for virtualization and their implication on the 
virtualization of traditional network functions. Based on this, the ISG has defined the NFV Architectural Framework, its 
main components and reference points (see ETSI GS NFV 002 [i.9]). 

More specifically, the ISG has defined the "NFV Infrastructure" (NFVI): "The NFVI is the totality of the hardware and 
software components which build up the environment in which VNFs are deployed. The NFVI is deployed as a 
distributed set of NFVI-nodes in various locations to support the locality and latency requirements of the different use 
cases and the NFVI provide the physical platform on which the diverse set of VNFs are executed; enabling the flexible 
deployment of network functions envisaged by the NFV Architectural Framework." (see ETSI 
GS NFV-INF 001 [i.10]).  

The high level NFV framework (see ETSI GS NFV 002 [i.9]), can be seen in Figure B.1 and consists of three main 
domains: 

• Virtualized Network Function (VNF): the software implementation of a network function which is capable 
of running over the NFVI. 

• NFV Infrastructure (NFVI): includes the diversity of physical resources and how they can be virtualized. 
The NFVI supports the execution of the VNFs. 

• NFV management and orchestration (MANO): covers the orchestration and lifecycle management of 
physical and/or software resources that support the infrastructure virtualization and the lifecycle management 
of VNFs. NFV Management and Orchestration focuses on all virtualization-specific management tasks 
necessary in the NFV framework. 

http://www.etsi.org/technologies-clusters/clusters/networks
http://www.etsi.org/technologies-clusters/clusters/networks
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Figure B.1: High Level NFV Framework 

B.2 The NFV architecture and the Microservice-based 
HLA 

The Microservices-based architecture presented in clause 7.3 and the NFV Architectural Framework have been 
developed in different contexts. In particular, NFV in addressing primarily the "traditional" networks (e.g. those 
operated by Telecom Service Providers) and focuses on their major Network Functions. In contrast, the "Microservices-
based HLA" is spanning across high-layers of the "IoT Stack" and potentially address a larger set of "IoT functions". 
Consequently, both approach share common objectives and similarities, as well as differences that are not fully visible 
today given the lack of maturity of the corresponding deployments. Some preliminary remarks are outlined below: 

• The potentially critical importance of the support from standards: 

 The NFV Architectural framework has been defined with the expectation that its approach to virtualization 
should be supported by a very precise set of standards (developed by NFV or not) supporting Reference 
Points. A similar approach has been taken by oneM2M for the development of IoT systems using its 
architectural framework. In both cases, the challenge posed to virtualization is to make sure that the support of 
standards will not be compromised. 

• Specialization: 

 An important difference between the NFV architectural approach and the IoT virtualization approach 
described in clause 7.3 is that NFV is more focused on the functions related to the network and does not 
systematically take into account higher-layer functions. 

• NFV as an IoT Virtualization Framework: 

 As long as the IoT functions that are targeted for virtualization are matching the ones defined in the NFV 
Architectural Framework, the latter can be used as an IoT virtualization framework where a VNF is replaced 
by an "IoT Virtualized Function". The main advantage of this approach is that the Reference Points defined by 
the NFV Architectural Framework can be used by the virtualized IoT system. 

• The role of the network: 5G, orchestration: 

 The deployment of 5G networks involves the redesign of the Core Network where the NFV architecture will 
play a central part, in particular the MANO component of the NFVI. The approach taken by the industry for 
the implementation of MANO has been to use Open Source both as a methodology and as a technology. Two 
major Open Source projects are under development: Open Source MANO (OSM) and Open Network 
Automation Platform (ONAP). 
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• Microservices as a new programming paradigm: 

 The technologies available for the implementation of microservices-based applications have reached a level of 
maturity and effectiveness that has made their usage become mainstream in software engineering. The 
development of the Virtualized Network Functions of NFV is largely based on this approach. This is a strong 
enabler to the adoption of microservice-based architectures like the one described in clause 7.3. 

• The role of Open Source components in the procurement of Telecom Operators: 

 Telecom Service Providers are increasingly using (and sometimes requesting) Open Source components in 
their procurement. The deployment of NFV systems will also include Open Source components (and not just 
for the MANO part). This can be seen as another enabler to the adoption of microservices-based architectures 
and should improve the effectiveness of NFV as an IoT virtualization framework. 

Despite the differences outlined above, the two approaches are not mutually exclusive and microservices (and 
microservices-based architectures) can be used in the NFV context, for example for the implementation of Virtualized 
Network Functions. 

The coming years are going to see the concurrent deployment of IoT systems using microservices-based HLA and of 
5G systems with IoT sub-systems. They will provide feedback and more lessons learned in terms of e.g. which use 
cases and business models are better supported by which approach; how far the microservice software development 
model will become the de-facto approach; which will be the relative part for the support of standards (and frameworks 
such as NFV and oneM2M and their related reference points) versus the use of OSS components, etc. 
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Annex C: 
Change History 

Date Version Information about changes 
November 2017 0.1.0 Early version for discussion at SmartM2M TC Meeting #44 
December 2017 0.2.0 First stable version for discussion at meeting with SmartM2M on January 9th, 2018 
January 2018 0.2.1 Revised stable version for discussion at meeting with SmartM2M on January 9th, 2018 
February 2018 0.3.0 Revised version for presentation at SmartM2M #45 

February 2018 0.3.1 Slightly revised version for SmartM2M #45 (document date; additional paragrah in 
clause 7.3.1) 

May 2018 0.4.0 Revised version for presentation at meeting with SmartM2M on May 7th 
May 2018 0.9.0 Final stable draft for review by SmartM2M participants 
July 2018 0.9.1 ETSI Secretariat check, EditHelp Clean-up 
July 2018 1.0.0 Final version for publication 
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